Math, asked by vijayant3180, 1 year ago

solve the equation for 'x',9x^2-9(a+b)x+(2a^2+5ab+2b^2)=0

Answers

Answered by OmGupta11
8

 {9x}^{2}  - 9(a + b)x + ( {2a}^{2}  + 5ab +  {2b}^{2} ) = 0 \\  {9x}^{2}  - 3(3a + 3b)x + ( {2a}^{2}  + 4ab + ab +  {2b}^{2} ) = 0 \\  {9x}^{2}  - 3 ((a + 2b) + (2a + b))x + (2a(a  +  2b) + b(a + 2b)) = 0 \\ 9 {x}^{2}  - 3(a + 2b)x - 3(2a + b)x + ((a + 2b)(2a + b)) = 0 \\ 3x(3x - (a + 2b)) - (2a + b)(3x - (a + 2b)) = 0 \\ (3x - (a + 2b))(3x - (2a + b)) = 0
3x = a + 2b \:  \:  \:  \:  \: or \:  \:  \:  \:  \: 2a + b \\ x =  \frac{a + 2b}{3}  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \frac{2a + b}{3}
If it helped you, please mark the answer as the Brainliest. Please!
Similar questions