solve the equation for x :
Answers
Answer:
solve the equation for x :
╔════════════════════════╗
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️
GIVEN EQUATION IS
╚════════════════════════╝
нσρє ıт нєłρs yσυ
_____________________
тнαηkyσυ
Answer:
\huge{\bold☘}\mathfrak\pink{\bold{\underline{{ ℘ɧεŋσɱεŋศɭ}}}}{\bold☘}☘
℘ɧεŋσɱεŋศɭ
☘
\huge\tt\red{\bold{\underline{\underline{❥Question᎓}}}}
❥Question᎓
solve the equation for x :
\bold{ (\frac{4x - 3}{2x + 1} ) - 10 (\frac{2x + 1}{4x - 3} ) = 3}(
2x+1
4x−3
)−10(
4x−3
2x+1
)=3
\huge\tt{\boxed{\overbrace{\underbrace{\blue{Answer }}}}}
Answer
╔════════════════════════╗
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️
GIVEN EQUATION IS
\bold{\boxed{\boxed{ ❲\frac{4x - 3}{2x + 1}❳ - 10 (\frac{2x + 1}{4x - 3} ) = 3}}}
❲
2x+1
4x−3
❳−10(
4x−3
2x+1
)=3
⟹\bold{( \frac{4x - 3}{2x + 1} ) - 10 (\frac{2x + 1}{4x - 3} ) = 3}⟹(
2x+1
4x−3
)−10(
4x−3
2x+1
)=3
⟹\bold{\frac{ {(4x - 3)}^{2} - 10 {(2x + 1)}^{2} }{(2x + 1)(4x - 3)} = 3}⟹
(2x+1)(4x−3)
(4x−3)
2
−10(2x+1)
2
=3
\bold{⟹(16 {x}^{2} - 24x + 9) - 10(4 {x}^{2} + 4x + 1)}⟹(16x
2
−24x+9)−10(4x
2
+4x+1)
\bold{= 3(8 {x}^{2} - 6x + 4x - 3)}=3(8x
2
−6x+4x−3)
\bold{16 {x}^{2} - 24x + 9 - 40 {x}^{2} - 40x - 10}16x
2
−24x+9−40x
2
−40x−10
\bold{ = 24 {x}^{2} - 18x + 12x - 9}=24x
2
−18x+12x−9
\bold{⟹- 24 {x}^{2} - 64x - 1 = 24 {x}^{2} - 6x - 9}⟹−24x
2
−64x−1=24x
2
−6x−9
⟹\bold{- 24 {x}^{2} - 24 {x}^{2} - 64x + 6x - 1 + 9 = 0}⟹−24x
2
−24x
2
−64x+6x−1+9=0
⟹\bold{- 48 {x}^{2} - 58x + 8 = 0}⟹−48x
2
−58x+8=0
⟹\bold{24 {x}^{2} + 29x - 4 = 0}⟹24x
2
+29x−4=0
⟹\bold{24 {x}^{2} + 32x - 3x - 4 = 0}⟹24x
2
+32x−3x−4=0
⟹\bold{8x(3x + 4) - 1(3x + 4) = 0}⟹8x(3x+4)−1(3x+4)=0
⟹\bold{(3x + 4)(8x - 1) = 0}⟹(3x+4)(8x−1)=0
⟹\bold{3x + 4 = 0}⟹3x+4=0
⟹\bold{8x - 1 = 0}⟹8x−1=0
\bold{\boxed{\red{x = - \frac{4}{3} }}}
x=−
3
4
\bold{\boxed{\blue{x = \frac{1}{8}}}}
x=
8
1
\bold{∴The\: solutions \:are\: -4/3\: and \:1/8}∴Thesolutionsare−4/3and1/8
╚════════════════════════╝
нσρє ıт нєłρs yσυ
_____________________
тнαηkyσυ