Math, asked by Anonymous, 5 months ago

solve the equation for x :
\bold{ (\frac{4x - 3}{2x + 1} ) - 10 (\frac{2x + 1}{4x - 3} ) = 3}


Answers

Answered by Anonymous
15

\huge\tt\red{\bold{\underline{\underline{❥Question᎓}}}}solve the equation for x :

\bold{ (\frac{4x - 3}{2x + 1} ) - 10 (\frac{2x + 1}{4x - 3} ) = 3}

\huge\mathcal{Answer}

GIVEN EQUATION IS

\bold{\boxed{\boxed{ ❲\frac{4x - 3}{2x + 1}❳ - 10 (\frac{2x + 1}{4x - 3} ) = 3}}}

⟹\bold{( \frac{4x - 3}{2x + 1} ) - 10 (\frac{2x + 1}{4x - 3} ) = 3}

 ⟹\bold{\frac{ {(4x - 3)}^{2}  - 10 {(2x + 1)}^{2} }{(2x + 1)(4x - 3)}  = 3}

\bold{⟹(16 {x}^{2}  - 24x + 9) - 10(4 {x}^{2}  + 4x + 1)}

 \bold{= 3(8 {x}^{2}  - 6x + 4x - 3)}

\bold{16 {x}^{2}  - 24x + 9 - 40 {x}^{2}  - 40x - 10}

\bold{ = 24 {x}^{2}  - 18x + 12x - 9}

 \bold{⟹- 24 {x}^{2}  - 64x - 1  = 24 {x}^{2} - 6x - 9}

 ⟹\bold{- 24 {x}^{2}  - 24 {x}^{2}  - 64x + 6x - 1 + 9 = 0}

 ⟹\bold{- 48 {x}^{2}  - 58x + 8 = 0}

⟹\bold{24 {x}^{2}  + 29x - 4 = 0}

⟹\bold{24 {x}^{2}  + 32x - 3x  - 4 = 0}

⟹\bold{8x(3x + 4) - 1(3x + 4) = 0}

⟹\bold{(3x + 4)(8x - 1) = 0}

⟹\bold{3x + 4 = 0}

⟹\bold{8x - 1 = 0}

\bold{\boxed{\red{x =  -   \frac{4}{3} }}}

\bold{\boxed{\blue{x =  \frac{1}{8}}}}

\bold{∴The\: solutions \:are\: -4/3\: and \:1/8}

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Similar questions