Math, asked by 12ahujagitansh, 7 hours ago

Solve the equation for x, using factorization method

 {x}^{2}  + (y +  \frac{1}{y}) + 1 = 0

Answers

Answered by mathdude500
8

Appropriate Question

Solve for x, using factorization method

\rm :\longmapsto\: {x}^{2}  + \bigg(y + \dfrac{1}{y} \bigg)x + 1 = 0

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\: {x}^{2}  + \bigg(y + \dfrac{1}{y} \bigg)x + 1 = 0

can be rewritten as

\rm :\longmapsto\: {x}^{2}  + \bigg(y + \dfrac{1}{y} \bigg)x + y \times \dfrac{1}{y}  = 0

\rm :\longmapsto\: {x}^{2}  + xy + \dfrac{x}{y} + y \times \dfrac{1}{y}  = 0

\rm :\longmapsto\: ({x}^{2}  + xy) +\bigg( \dfrac{x}{y} + y \times \dfrac{1}{y}\bigg)  = 0

\rm :\longmapsto\:x(x + y) + \dfrac{1}{y} \bigg(x + y\bigg)  = 0

\rm :\longmapsto\:(x + y)\bigg(x + \dfrac{1}{y} \bigg) = 0

\rm :\longmapsto\:x + y= 0 \:  \:  \: or \:  \:  \: x + \dfrac{1}{y} = 0

\bf\implies \:x =  - y \:  \:  \: or \:  \:  \: x =  - \dfrac{1}{y}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by EmperorSoul
0

Appropriate Question

Solve for x, using factorization method

\rm :\longmapsto\: {x}^{2}  + \bigg(y + \dfrac{1}{y} \bigg)x + 1 = 0

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\: {x}^{2}  + \bigg(y + \dfrac{1}{y} \bigg)x + 1 = 0

can be rewritten as

\rm :\longmapsto\: {x}^{2}  + \bigg(y + \dfrac{1}{y} \bigg)x + y \times \dfrac{1}{y}  = 0

\rm :\longmapsto\: {x}^{2}  + xy + \dfrac{x}{y} + y \times \dfrac{1}{y}  = 0

\rm :\longmapsto\: ({x}^{2}  + xy) +\bigg( \dfrac{x}{y} + y \times \dfrac{1}{y}\bigg)  = 0

\rm :\longmapsto\:x(x + y) + \dfrac{1}{y} \bigg(x + y\bigg)  = 0

\rm :\longmapsto\:(x + y)\bigg(x + \dfrac{1}{y} \bigg) = 0

\rm :\longmapsto\:x + y= 0 \:  \:  \: or \:  \:  \: x + \dfrac{1}{y} = 0

\bf\implies \:x =  - y \:  \:  \: or \:  \:  \: x =  - \dfrac{1}{y}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions