Math, asked by manikanta71, 10 months ago

Solve the equation for x; |x + 2| = 2(3 - x)​

Answers

Answered by Nishanth842
1

Answer:

x+2=2(3-x)

x+2=6-2x

x+2x=6-2

3x=4

x=4/3

Answered by Anonymous
11

\huge\tt{\red{\underline{Given:}}}

|x+2|=2(3-x)

\huge\tt{\red{\underline{To\:\:Find:}}}

★The value of x.

\huge\tt{\red{\underline{Concept\:\:Used:}}}

★We will square both sides to remove modulus.

\huge\tt{\red{\underline{Answer:}}}

We have,

\implies |x+2|=2(3-x)

\implies (|x+2|)^{2}=[2(3-x)]^{2}

\implies (x+2)^{2}=2^{2}(3-x)^{2}

\implies x^{2}+4+4x=4(9+x^{2}-6x)

\large\green{\boxed{(a+b)^{2}=a^{2}+b^{2}+2ab}}

\large\green{\boxed{(a-b)^{2}=a^{2}+b^{2}-2ab}}

\implies\small{x^{2}+4+4x=36+4x^{2}-24x}

\implies 4x^{2}-x^{2}-24x-4x+36-4=0

\implies 3x^{2}-28x+32=0

On factorising,

\implies 3x^{2}-24x-4x+32=0

\implies 3x(x-8) -4(x-8) =0

\implies (3x-4) (x-8) =0

{\underline{\boxed{.°. x =8, \dfrac{4}{3}}}}

Attachments:
Similar questions