Math, asked by harshitk212007, 15 days ago

solve the equation given below

Attachments:

Answers

Answered by MrImpeccable
19

ANSWER:

Given:

  • (5 + 2√3)/(7 + 4√3) = a + b√3

To Find:

  • Value of a and b.

Solution:

We are given that,

\implies\dfrac{5+2\sqrt3}{7+4\sqrt3}=a+b\sqrt3

Now, we will rationalise it.

The rationalising factor of 7 + 4√3 = 7 - 4√3

So,

On multiplying and dividing LHS by 7 - 4√3

\implies\dfrac{5+2\sqrt3}{7+4\sqrt3}\times\dfrac{7-4\sqrt3}{7-4\sqrt3}=a+b\sqrt3

Combining fractions,

\implies\dfrac{(5+2\sqrt3)(7-4\sqrt3)}{(7+4\sqrt3)(7-4\sqrt3)}=a+b\sqrt3

We know that,

⇒ (x + y)(x - y) = x² - y²

So,

\implies\dfrac{(5+2\sqrt3)(7-4\sqrt3)}{(7+4\sqrt3)(7-4\sqrt3)}=a+b\sqrt3

\implies\dfrac{(5+2\sqrt3)(7-4\sqrt3)}{(7)^2-(4\sqrt3)^2}=a+b\sqrt3

\implies\dfrac{(5\times7)+(5\times-4\sqrt3)+(2\sqrt3\times7)+(-2\sqrt3\times4\sqrt3)}{(7)^2-(\sqrt{48})^2}=a+b\sqrt3

\implies\dfrac{35-20\sqrt3+14\sqrt3-24}{49-48}=a+b\sqrt3

\implies\dfrac{11-6\sqrt3}{1}=a+b\sqrt3

\implies 11-6\sqrt3=a+b\sqrt3

On comaring the terms,

  • a = 11
  • b = -6

Therefore, the value of a and b is 11 and -6 respectively.

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf{ \underline{Given-}} \\

  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  =  \bf \: a + b \sqrt{3}  \\

 \bf \underline{To \:  find \:  out-} \\

 \rm{Value \:  of  \:  a \: and \:  b \:  in  \: given \: expression.} \\

 \bf \underline{Solution-} \\

Given expression

  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  =  \bf \: a + b \sqrt{3}  \\

The denominator is 7 + 4√3.

We know that

Rationalising factor of a + b√c = a - b√c.

So, the rationalising factor of 7 +4√3 = 7-4√3.

On rationalising the denominator them

 \longrightarrow \:   \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} } \\

 \longrightarrow \:  \frac{(5 + 2 \sqrt{3})(7 - 4 \sqrt{3})  }{(7 + 4 \sqrt{3})(7 - 4 \sqrt{3})  }  \\

Now, applying algebraic identity in denominator because it is in the form of;

(a+b)(a-b) = a² - b²

Where, we have to put in our expression: a = 7 and b = 43 , we get

\longrightarrow \:  \frac{(5 + 2 \sqrt{3} )(7 - 4 \sqrt{3}) }{(7 {)}^{2} - (4 \sqrt{3} {)}^{2}   } \\

\longrightarrow \:  \frac{(5 + 2 \sqrt{3} )(7 - 4 \sqrt{3}) }{49 - 48}  \\

Subtract 49 from 48 in denominator to get 1.

\longrightarrow \:  \frac{(5 + 2 \sqrt{3} )(7 - 4 \sqrt{3}) }{1}  \\

\longrightarrow \: (5 + 2 \sqrt{3} )(7 - 4 \sqrt{3} ) \\

Now, multiply both term left side to right side.

 \longrightarrow \: 35 + 14 \sqrt{3}  - 20 \sqrt{3}  - 8 \sqrt{3 \times 3 } \\

 \longrightarrow \: 35 + 14 \sqrt{3}  - 20 \sqrt{3}  - 24 \\

 \longrightarrow \: (35 - 24) - 6 \sqrt{3}  \\

 \longrightarrow \: 11 - 6 \sqrt{3}  \\

  \bf\therefore \: 11 - 6 \sqrt{3}  = a + b \sqrt{3}  \\

On, comparing with R.H.S , we have

a = 11 and b = -6

  \bf \underline{Hence, value \:  of \: a  = 11 \: and \: b  =  - 6.} \\

Used Formulae:

(a+b)(a-b) = a² - b

Rationalising factor of a + b√c = a - b√c.

Similar questions