Math, asked by rowdymass18, 1 year ago

solve the equation log4x+log4(x-6)=2

Answers

Answered by itsdelicatebabe
0
We know the property,
logA + logB = logAB

So, by this ...

log4x + log4(x-6) = 2
log[(4x)4(x-6)] = 2

2 can be written as log10 + log10 => log100

Now,

log[ 16x^2 - 96x ] = log100
16x^2 - 96x = 100
4x^2 - 24x - 25 = 0
value of x solved in the pic ...

...plz tell me if the solution is wrong , I will try again..



《●☆☆☆hope it helps you☆☆☆●》


Attachments:
Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
1

\huge\sf\pink{Answer}

☞ Your answer is 8

\rule{110}1

\huge\sf\blue{Given}

\sf log_{4}(x) + log_{4}(x - 6) = 2

\rule{110}1

\huge\sf\gray{To \:Find}

✭ Value of 'x' = ?

\rule{110}1

\huge\sf\purple{Steps}

Using property :

\longrightarrow \: \large { \boxed { \sf{ log_{e}(a) + log_{e}(b) = log_{e}(a.b) }}}

So that :

\leadsto \: { \sf{ log_{4}(x(x - 6) ) = 2 }}

\leadsto{ \sf{ log_{4}(x {}^{2} - 6x) = 2 }}

Using property :

\longrightarrow \: \large { \sf { if \: \: log_{e}(a) = b \: \: then \: \: { \boxed{ \sf{ a = {e}^{b}}}} }}

So that :

 \twoheadrightarrow \: { \sf{ (x {}^{2} - 6x) = {(4)}^{2} }}

\twoheadrightarrow \: { \sf{ (x {}^{2} - 6x) = 16 }}

\twoheadrightarrow \: { \sf{ x {}^{2} - 6x - 16 = 0 }}

\twoheadrightarrow \: { \sf{ x {}^{2} - 8x + 2x- 16 = 0 }}

 \twoheadrightarrow \: { \sf {x (x- 8) + 2(x- 8) = 0 }}

\twoheadrightarrow \: { \sf{ (x + 2)(x- 8) = 0 }}

\large \: \red { \twoheadrightarrow{ \sf{ x = - 2 \: \:, \: \: 8}}}

But x > 0 , So ...

\orange { \dashrightarrow{ \sf{ x = 8}}}

\rule{170}3

Similar questions
Math, 1 year ago