Math, asked by maelj2000, 6 hours ago

Solve the equation log5(x−11)+log5(x−6)=2 X is equal to

Answers

Answered by senboni123456
1

Answer:

Step-by-step explanation:

We have,

\sf{\log_{5}(x-11)+\log_{5}(x-6)=2}

domain: x > 6

\sf{\implies\log_{5}(x-11)(x-6)=2}

\sf{\implies(x-11)(x-6)=5^2}

\sf{\implies\,x^2-17x+66=25}

\sf{\implies\,x^2-17x+66-25=0}

\sf{\implies\,x^2-17x+41=0}

\sf{\implies\,x=\dfrac{-(-17)\pm\sqrt{(-17)^2-4\cdot(1)\cdot(41)}}{2}}

\sf{\implies\,x=\dfrac{17\pm\sqrt{289-164}}{2}}

\sf{\implies\,x=\dfrac{17\pm\sqrt{125}}{2}}

\sf{\implies\,x=\dfrac{17+5\sqrt{5}}{2}\,\,\,\,or\,\,\,\,x=\dfrac{17-5\sqrt{5}}{2}}

\sf{But\,\,\, x\ne\dfrac{17-5\sqrt{5}}{2},\,\,\,as\,\,\dfrac{17-5\sqrt{5}}{2}<6}

So, only solution is \sf{x=\dfrac{17+5\sqrt{5}}{2}}

Similar questions