Math, asked by mezalievinuosekhose, 3 months ago

Solve the equation pair of linear equations by cross multiplication method.x-3y-7=0 and 3x-3y-15=0​

Answers

Answered by arunabalamohapatra
1

Answer:

x = 4 and 6y = 1

Refer to the above attatchment

Attachments:
Answered by Anonymous
6

 \bf \: Given \: eq.

  : \implies \sf \: x - 3y - 7 = 0

 :  \implies  \sf \: 3x - 3y - 15 = 0

 \bf now

 :  \implies \sf \: a_{1} = 1,b_{1} =  - 3 \: and \: c_{1}  =  - 7 \\ :  \implies \sf \: a_{2} = 3,b_{2} =  - 3\: and \: c_{2}  =  - 15

 \bf \: Formula

 \sf :  \implies \: x =  \dfrac{b _1c_2 - b_2c_1}{a_1b_2 - a_2b_1} ,y =  \dfrac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}

 \bf \: Put \: the \: value \: on \: formula

 \sf  : \implies \: x =  \dfrac{( - 3)( - 15) - ( - 3)( - 7)}{(1)( - 3) - ( 3)( - 3)} ,y =  \dfrac{( - 7)(3) - ( - 15)(1)}{(1)( - 3) - ( 3)( - 3)}

 \sf  : \implies x = \dfrac{45 - 21}{ - 3 + 9} ,y =  \dfrac{ - 21 + 15}{ - 3 + 9}

 \sf :  \implies \: x =  \dfrac{24}{6} ,y =  \dfrac{ - 6}{6}

 \sf :  \implies \: x =  \dfrac{24}{6} ,y =   - 1

 \bf \: Answer

\sf :  \implies \: x =  4 ,y =   - 1

Similar questions