Math, asked by trayyyy16, 1 month ago

solve the equation

please

Attachments:

Answers

Answered by tennetiraj86
4

Step-by-step explanation:

Given :-

5/(x-3) - 4/(x+4) = 1/x

To find :-

Find the value of x ?

Solution :-

Given equation is 5/(x-3) - 4/(x+4) = 1/x

=> [5(x+4) - 4(x-3)]/(x-3)(x+4) = 1/x

=> (5x+20-4x+12)/(x-3)(x+4) = 1/x

=> (x+32)/(x-3)(x+4) = 1/x

On applying cross multiplication then

=> x(x+32) = (x-3)(x+4)

=> x²+32x = x(x+4)-3(x+4)

=> x²+32x = x²+4x-3x-12

=> x²+32x = x²+x-12

=> x²+32x-x²-x = -12

=> (x²-x²)+(32x-x) = -12

=> 0+31x = -12

=> 31x = -12

=> x = -12/31

Therefore, x = -12/31

Answer:-

The value of x for the given problem -12/31

Check :-

If x = -12/31 then LHS of the equation is

5/(x-3) - 4/(x+4)

=> 5/[(-12/31)-3] -4/[(-12/31)+4]

=> 5/[(-12-93)/31] -4/[(-12+124)/31]

=> 5/(-105/31) - 4/(112)/31

=> (5×-31)/105 - (4×31)/112

=> (-115/105)-(124/112)

=> (-31/21) - (31/28)

=> (-31)[(1/21)+(1/28)]

=> (-31)(21+28)/(21×28)

=> (-31×49)/(21×28)

=> (-31×7)/(21×4)

=>-31/12

And RHS = 1/x

=> 1/(-12/31)

=> -31/12

=> LHS = RHS is true for x = -31/12

Verified the given relations in the given problem.

Answered by Okhey
25

\large{\underline{\underline{ \bf{➥Question:-}}}}

\bold{ \small \underline{ \mathbb{\underline{SOLVE : }}}}

\underline{ \boxed{ \sf{ ✰  \frac{  5}{x-3}   \:  -  \:  \frac{4}{x+4}   \:  =  \:  \frac{1}{x}  \: }}}

\large{\underline{\underline{ \bf{☂Solution:-}}}}

  • Take LCM of (x - 3) , (x + 4) first
  • LCM will be (x - 3)(x + 4)

\large\longmapsto  \frac{5 \: (x  + 4 \: ) \:   -  4 \:(x  -  3 \: )}{(x - 3)(x + 4)}  =   \frac{1}{x}

  • After solving the brackets :

\large\longmapsto  \frac{5x \:   +   \: 20 \:   -   \: 4x \:  +  \: 12 }{ {x}^{2} \: +  4x \: - 3x \:  - 12  }  =  \:   \frac{1}{x}

\large\longmapsto  \frac{x \:   +   \: 32}{ {x}^{2} \:  + x \:  - 12 }  \:  =  \:   \frac{1}{x}

  • Doing cross multiplication :

\small\longmapsto \:  {x}^{2}  \:   +   \: 32x \:  =  \:   {x}^{2}  + x \:  - 12

\large\longmapsto 32x \:  =  \:  x \:  -  \: 12

\large\longmapsto 32x  - x\:  =  \:  -  \: 12

\longmapsto 31x \:  =   \:  -  \: 12

\large\longmapsto x \:  =   \frac{ - 12}{ \:  \:  \:  \: 31}

\underline{ \boxed{ \sf{ ⚝ \: \:  x \:  =  \:  \dfrac{-12}{ 31} }}}

\huge\underline{\overline{\mid{\bold{\bold{Thanks✅}}\mid}}}

Similar questions