Math, asked by Navjot6631, 1 year ago

Solve the equation: sin−1(6x)+sin−1(6√3x)=−π2

Answers

Answered by KarupsK
101
In the attachment I have answered this problem.

I hope this answer Will be easy to understand


Attachments:
Answered by parmesanchilliwack
34

Answer: x=-\frac{1}{12}

Step-by-step explanation:

Here,

sin^{-1}(6x)+sin^{-1}(6\sqrt{3})=-\frac{\pi}{2}

sin^{-1}(6x)+[\frac{\pi}{2} - cos^{-1}(6\sqrt{3})x]= -\frac{\pi}{2}

sin^{-1}(6x)=-\frac{\pi}{2} - \frac{\pi}{2} + cos^{-1}(6\sqrt{3})x

sin^{-1}(6x)=-\pi + cos^{-1}(6\sqrt{3})x

sin^{-1}(6x)= -[\pi-cos^{-1}(6\sqrt{3})x]

sin^{-1}(6x)= -cos^{-1}(-6\sqrt{3})x

-sin^{-1}(6x)= cos^{-1}(-6\sqrt{3})x

sin^{-1}(-6x)= cos^{-1}(-6\sqrt{3})x=\alpha

\implies sin^{-1}(-6x)=\alpha  and cos^{-1}(-6\sqrt{3})x=\alpha

\implies -6x = sin\alpha  and -6\sqrt{3}x=cos\alpha

\frac{-6x}{-6\sqrt{3}x}= tan\alpha

\frac{1}{\sqrt{3}}=tan\alpha

tan^{-1}\frac{1}{\sqrt{3}} = \alpha\implies \frac{\pi}{6}=\alpha

\frac{\pi}{6}=sin^{-1}(-6x)

sin \frac{\pi}{6}=-6x

\frac{1}{2}=-6x

-\frac{1}{12}=x

Which is the required solution.

Similar questions