Math, asked by mishramayank182, 5 months ago

solve the equation Sin^
2 theeta-2costheeta+1/4=0​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \sin^{2} ( \theta)  - 2 \cos(\theta)  +  \frac{1}{4}  = 0 \\

 \implies4 \sin^{2} (\theta)  - 8 \cos(\theta)  + 1 = 0

 \implies4(1 -  \cos ^{2} (\theta) ) - 8 \cos(\theta)  + 1 = 0

 \implies4 - 4 \cos ^{2} (\theta) - 8 \cos(\theta)   + 1 = 0 \\

 \implies4 \cos ^{2} (\theta)  +  8 \cos(\theta)    -  5= 0 \\

 \implies4 \cos ^{2} (\theta)  +  10\cos(\theta)  - 2 \cos(\theta)    -  5= 0 \\

 \implies2\cos (\theta)(2 \cos(\theta)   +5)   - 1(2 \cos(\theta)     +   5)= 0 \\

 \implies(2\cos (\theta ) - 1)(2 \cos(\theta)   +5)  = 0 \\

 \implies2\cos (\theta ) - 1 = 0 \:  \: or \:  \: 2 \cos(\theta)   +5  = 0 \\

 \implies\cos (\theta )  =  \frac{1}{2}  \:  \: or \:  \: \cos(\theta)     =   - \frac{5}{2}  \\

We know, the values of cos(θ) lies between -1 to 1, so cos(θ) ≠ -5/2

So,

 \implies\cos (\theta )  =  \frac{1}{2}  \\

 \implies\cos (\theta )  =   \cos( \frac{\pi}{3} )   \\

 \implies\theta  =   2n\pi +  \frac{\pi}{3}  \:  \: or \:  \: 2n\pi -  \frac{\pi}{3}   \\

Similar questions