solve the equation sin mx+sin nx=0
Answers
Answered by
1
Given:
The equation sin mx + sin nx = 0
To find:
Solve the equation sin mx + sin nx = 0
Solution:
From given, we have,
The equation sin mx + sin nx = 0
use the formula,
sin a + sin b = 2 sin (a+b)/2 cos (a-b)/2
2 sin (m+n)x/2 cos (m-n)x/2 = 0
sin (m+n)x/2 cos (m-n)x/2 = 0
sin (m+n)x/2 = 0
and
cos (m-n)x/2 = 0
sin (m+n)x/2 = 0
(m+n)x/2 =px
cos (m-n)x/2 = 0
(m-n)x/2 = (2q + 1)x/2
p, q ∈ I
x = 2px/(m + n)
x = (2q + 1)x/(m - n)
Therefore, the solution of the equation sin mx + sin nx = 0 is x = 2px/(m + n) and x = (2q + 1)x/(m - n)
Similar questions