Solve the equation: sin θ + sin 5θ = sin 3θ, 0 < θ < π.
Answers
Answered by
1
θ = π /12 is the required answer.
Given that
sin θ + sin 5θ = sin 3θ, 0 < θ < π
sin 5θ + sin θ = sin 3θ
2 sin[(5θ + θ)/2].cos[(5θ - θ)/2] = sin 3θ
2 sin 3θ. cos 2θ - sin 3θ = 0
sin 3θ [2 cos 2θ - 1] = 0
sin 3θ = 0 , 2 cos 2θ - 1 = 0
For sin 3θ = 0
θ = 0 Not valid according to given condition
For 2 cos 2θ - 1 = 0
2 cos 2θ - 1 = 0
2 cos 2θ = 1
cos 2θ = 1 /2
2θ = π /6
θ = π /12 is the required answer.
Similar questions