solve the equation sin2thita + sin4thita + sin 6thita =0
Answers
Answer:
principal values for € are 0,π/3,π/2,2π/3,π,4π/3,3π/2,5π/2
Step-by-step explanation:
I am using € instead of theta...
sin 2€ + sin 4€ + sin 6€=0
or,sin 4€ + sin 2€ + sin 6€=0
or,sin 4€ + 2 sin (2€+6€)/2 . cos (2€-6€)/2 =0
or,sin 4€ + 2 sin 4€ . cos 2€=0
or,sin 4€ ( 1 + 2 cos 2€)=0
either sin 4€=0 or (1 + 2 cos 2€)=0
=>4€=2nπ
=>€=nπ/2
n=0 ,€=0
n=1 ,€=π/2
n=2, €=π
n=3, €=3π/2
n=4, €=2π ×××× (as principal value is 0≤€<2π)
or, cos 2€=-1/2
or, 2€=2nπ±2π/3
or,€=nπ±π/3
n=0, €=π/3 (as -π/3<0)
n=1 , €=2π/3 or 4π/3
n=2, €=5π/3 (as 7π/3>2π)
hence, principal values for € are 0,π/3,π/2,2π/3,π,4π/3,3π/2,5π/2....
some information:
*sin A+ sin B= 2 sin (A+B)/2 cos (A-B)/2
*general solutions:
sin a=sin b
=>a=nπ+(-1)ⁿb
cos a=cos b
=>a=2nπ±b
tan a=tan b
=>a=nπ+b
the principal range of value is 0≤€<2π where € is the angle.