Math, asked by shivamrana64, 1 year ago

solve the equation t-(2t+5)-(1-2t)=(3+4t)-2(t-4)​

Answers

Answered by shivani3155
41

Answer:

t = -17

Step-by-step explanation:

t-(2t + 5) - (1 - 2t) = (3 + 4t) -2(t - 4)

t - 2t - 5 - 1 + 2t = 3 + 4t - 2t + 8

t - 6 = 2t + 11

t - 2t = 11 + 6

-t = 17

t = -17

Answered by AbhijithPrakash
30

Answer:

$\blue{t-\left(2t+5\right)-\left(1-2t\right)=\left(3+4t\right)-2\left(t-4\right)\quad :\quad t=-17}$

Step-by-step explanation:

$t-\left(2t+5\right)-\left(1-2t\right)=\left(3+4t\right)-2\left(t-4\right)$

$\green{t-\left(2t+5\right)-\left(1-2t\right)=3+4t-2\left(t-4\right)}$

$\gray{\mathrm{Expand\:}t-\left(2t+5\right)-\left(1-2t\right):\quad t-6}$

$\gray{\mathrm{Expand\:}3+4t-2\left(t-4\right):\quad 2t+11}$

$\green{t-6=2t+11}$

$\gray{\mathrm{Add\:}6\mathrm{\:to\:both\:sides}}$

$t-6+6=2t+11+6$

$\gray{\mathrm{Simplify}}$

$t=2t+17$

$\gray{\mathrm{Subtract\:}2t\mathrm{\:from\:both\:sides}}$

$t-2t=2t+17-2t$

$\gray{\mathrm{Simplify}}$

$-t=17$

$\gray{\mathrm{Divide\:both\:sides\:by\:}-1}$

$\displaystyle\frac{-t}{-1}=\frac{17}{-1}$

$\gray{\mathrm{Simplify}}$

$t=-17$

Attachments:
Similar questions