Math, asked by damodarpoduval, 6 days ago

solve the equation tan^2theta+cot^2theta=2​

Answers

Answered by jitendra12iitg
0

Answer:

The answer is \theta=n\pi\pm \frac{\pi}{4}

Step-by-step explanation:

Given \tan^2\theta+\cot^2\theta=2

         \Rightarrow \tan^2\theta+\cot^2\theta-2=0\\\Rightarrow \tan^2\theta+\cot^2\theta-2\tan\theta\cot \theta=0, using identity \tan\theta\cot \theta=1

        \Rightarrow (\tan\theta-\cot \theta)^2=0\\\Rightarrow (\tan\theta-\cot \theta)=0\\\Rightarrow \tan\theta=\cot\theta=\frac{1}{\tan\theta}\\\\\Rightarrow \tan^2\theta=1=\tan^2{\frac{\pi}{4}}

Thus the general solution is

                      \theta=n\pi\pm \frac{\pi}{4}, n\in Z

Since general solution of \tan^2\theta=\tan^2\alpha is \theta=n\pi\pm \alpha

Similar questions