Math, asked by NITESH761, 1 month ago

solve the equation:-

1 + 4 + 7 + ... + x = 925
please don't scam for 5 points.​

Answers

Answered by MysticSohamS
31

Answer:

hey here is your solution

pls mark it as brainliest

being a science student I could also help you in commerce as I have a keen interest in maths especially in geometry and statistics

Step-by-step explanation:

to \: find =  \\ value \: of \: x \\  \\ so \: here \: given \: sequence \: is \\ 1,4,7, \: till \: x \\  \\ so \: here \:  \\ t1 = 1 \\ t2 = 4 \\ t 3 = 7 \\  \\ hence \: then \\ d = t2 - t1 \\  = 4 -  1 \\  = 3 \\  \\ d = t3 - t2 \\  = 7 - 4 \\  = 3 \\  \\ hence \: as \: common \: difference \: is \: constant \\ the \: given \: sequence \: is \: an \: A.P \\ so \: for \: given \: A.P \\ a = t1 = 1 \\ d = 3 \\ Sn = 925 \\  tn = x \\ \\   so \: we \: know \: that \\ tn = a + (n - 1)d \\  \\ x = 1 + (n - 1) \times 3 \\  = 1 + 3n  - 3 \\ 3n - 2 \\ x + 2 = 3n \\ \\ n =  \frac{x + 2}{3}  \\  \\ hence \: then \: using \\ Sn =  \frac{n}{2} (t1 + tn) \\  \\ 925 \times 2 =  \frac{x + 2}{3}  \: (x + 1) \\  \\ 1850 \times 3 = (x + 2)(x + 1) \\  \\ 5550 = x {}^{2}  + x + 2x + 2 \\  \\ x {}^{2}  + 3x - 5548 = 0 \\  \\ so \: comparing \: it \: with \\  \: ax {}^{2}  + bx + c = 0 \\ we \: get \\  \\ a = 1 \: , \: b = 3 \: ,c =  - 5548

so \: now \: using   \\ ∆ = b {}^{2}  - 4ac \\    = (3) {}^{2}  - 4 \times 1 \times ( - 5548) \\  = 9 - ( - 22192) \\  = 22192 + 9 \\  = 22201 \\  \\ so \: by \: applying \: formula \: method \\ we \: get \\  \\ x =   \frac{ - b \: ± \:  \sqrt{b {}^{2}  - 4ac} }{2a}  \\  \\  =  \frac{ - 3 \: ± \:  \sqrt{22201} }{(2 \times 1)}  \\  \\  =  \frac{ - 3 \:± \: 149 }{2}  \\  \\ x =  \frac{ - 3 \: + 149 }{2}  \:  \: or \:  \: x =  \frac{ - 3 - 149}{2}  \\  \\  =  \frac{146}{3}  \:  \: or \:  \:  =  \frac{ - 152}{2}  \\  \\  x= 73 \:  \: or \:  \: x =  - 76 \\  \\

but \: if \: we \: consider \\ x =  - 76 \\  \\ then \:  \\ n =  \frac{ - 76 + 2}{3}   \\  \\  =  \frac{ - 74}{3}  \\  \\ so \: as \: total \: no \: of \: terms \: are \: never \: negative \\ as \: n \: ∈ \: N \\ x =  - 76 \:  \: is \: absurd

hence \: then \\ x = 73

Answered by CopyThat
51

Answer:

  • Value of x is 73.

Step-by-step explanation:

Given :

\bold{1+4+7+..+x=925}

To find :

Value of \bold{x}

Solution :

We see that the above series is an A.P

We have:

  • First term (a) = 1
  • Common difference (d) = 3
  • Sₙ = 925
  • Last term (l) = x

We know:

\bold{S_n=\dfrac{n}{2}(2a+(n-1)d) }

\rightarrow \bold{925=\dfrac{n}{2}(2(1)+(n-1)3) }

\rightarrow \bold{925=\dfrac{n}{2}(2)+(3n-3) }

\rightarrow \bold{925=\dfrac{n}{2}(3n-1) }

\rightarrow \bold{1850=3n^2-n}

Factorizing we get:

\rightarrow \bold{3n^2-n-1850=0}

\rightarrow \bold{3n^2-75n+74n-1850=0}

\rightarrow \bold{3n(n-25)+74(n-25)=0}

\rightarrow \bold{3n+74=0\;and\;n-25=0}

\rightarrow \bold{n=-\dfrac{74}{3}\;and\;n=25 }

∴ Value of \bold{n=25}

Now, \bold{a+(n-1)d=x}:

\rightarrow \bold{1+(25-1)3=x}

\rightarrow \bold{1+24(3)=x}

\rightarrow \bold{1+72=x}

∴ Value of \bold{x=73}

Similar questions