Math, asked by shaliniroy1707, 1 month ago

Solve the equation
 {2}^{x} \times  {6}^{y}  = 24 -  -  -  -  -  - (1)
 {2}^{2x}  \times  {3}^{y }  = 48 -  -  -  -  -  -  - (2)

Answers

Answered by rohangupta0424
1

Answer:

2^x*6^y=24

2^x=\frac{24}{6^y}

2^{2x}*3^y=48

4*2^x*3^y=48

Replacing 2^x with \frac{24}{6^y}

4*\frac{24}{6^y}*3^y=48

\frac{4*24*3^y}{6^y} = 48

\frac{3^y}{6^y} =\frac{48}{4*24}

\frac{3^y}{2^y*3^y}=\frac{1}{2}

\frac{1}{2^y}=\frac{1}{2}

2^y=2

y=1

2^x*6^y=24

2^x*6=24

2^x=4

2^x=2^2

Bases are same,

x=2

x=2, y=1

Similar questions