Math, asked by cashew74, 10 months ago

Solve the equation.
(2x + 1) +  \frac{3}{2x + 1}  = 4

Answers

Answered by Anonymous
107

\huge{\underline{\underline{\mathfrak{\red{Solution:}}}}}

___________________________________________

 {4x}^{2}  + 4x + 1 + 3 = 4(2x + 1)

 {(2x + 1)}^{2}  + 3  = 4(2x + 1)

4( {x}^{2}   + x + 1) = 4(2x + 1)

 {x}^{2}  + x + 1 = 2x + 1

x = 1

___________________________________________

\huge{\underline{\underline{\mathfrak{\green{Thanks\:on\:my\:Answer}}}}}


Rythm14: well done! :)
Answered by ItsTogepi
22

\huge\underline\mathbb\color{lightpink}SOLUTION

\rule{300}{2}

(2x + 1) +  \frac{3}{2x  + 1}  = 4 \\  \implies \:  \frac{2x +  {1})^{2} }{2x + 1}  =  \frac{4}{1}  \\  \implies \frac{4 {x}^{2} + 4x + 1 + 3 }{2x + 1}  =  4 \\   \implies  \frac{4( {x}^{2}  + x + 1) }{2x + 1}  = 4 \\  \implies {x}^{2}  + x + 1 = 2x + 1 \\  \implies {x}^{2}  + x - 2 = 1 - 1 \\  \implies {x}^{2}  - x = 0 \\  \implies \: x(x - 1) = 0 \\  \\ Either \:    \\ x =0 \\  \\ Or \:  \\   x - 1 = 0 \\   \implies \: x = 1

The solution is x= 0,1

\rule{300}{2}

ThankYou✌✌

Similar questions