Math, asked by gland, 1 year ago

Solve the Equation:

3( {2}^{x}  + 1) - 2 {}^{x + 2}  + 5 = 0

Answers

Answered by nainaram79
1
x = 3
3 is the answer
Attachments:
Answered by GodBrainly
3
\huge{\mathfrak{Solution:}}



\bf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: We \: have,



 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf 3( {2}^{x} + 1) + {2}^{x + 2} + 5 = 0 \\ \\ \to \: \: \: \: \: \: \: \: \: \: \: \sf 3 \times {2}^{x} + 3 - {2}^{x} \times 2 {}^{2} +5 = 0 \\ \\ \to \: \: \: \: \: \: \: \: \: \: \: \sf 3 \times 2 {}^{x} - 4 \times {2}^{x} + 8 = 0 \\ \\ \to \: \: \: \: \: \: \: \: \: \: \: \sf(3 - 4)2 {}^{x} + 8 = 0 \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \: -2 {}^{x} + 8 = 0 \\ \\ \to\: \: \: \: \: \: \: \: \: \: \: \sf 2 {}^{x} = 8 \\ \\ \to \: \: \: \: \: \: \: \: \: \: \sf \: 2 {}^{x} = {2}^{3} \\ \\ \to \: \: \: \: \: \: \: \: \: \: \: \huge \blue{\boxed{\boxed{ \sf \green{x = 3}}}}
Similar questions