Math, asked by Anonymous, 4 days ago

Solve the equation : \bf \: x \times \dfrac{1}{x} = 2 \times \dfrac{1}{20} \: \: x \neq0

Answers

Answered by mathdude500
39

Appropriate Question :-

Solve the equation :-

\rm \: x\dfrac{1}{x} = 2  \frac{1}{20}  \\

\large\underline{\sf{Solution-}}

Given equation is

\rm \: x\dfrac{1}{x} = 2  \frac{1}{20}  \\

can be rewritten as

\rm \:  \frac{ {x}^{2} + 1 }{x}  =  \frac{40 + 1}{20}  \\

\rm \:  \frac{ {x}^{2} + 1 }{x}  =  \frac{41}{20}  \\

\rm \: 20( {x}^{2} + 1) = 41x \\

\rm \: 20 {x}^{2} + 20= 41x \\

\rm \: 20 {x}^{2} - 41x + 20= 0 \\

\rm \: 20 {x}^{2} - 25x - 16x + 20= 0 \\

\rm \: 5x(4x - 5) - 4(4x - 5) = 0 \\

\rm \: (4x - 5)(5x - 4) = 0 \\

\rm\implies \:x =  \frac{4}{5} \:  \:  \: or \:  \:  \: x =  \frac{5}{4} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by kvalli8519
28

 \underline{ \bf{GIVEN } }:

 \rm \qquad  \mapsto \:  \:  x   \frac{1}{x}  = 2 \frac{1}{20}

 \underline{ \mathbf{SOLUTION  }} :

 \implies \rm  \frac{ {x}^{2}  + 1}{x}  =  \frac{20 \times 2 + 1}{20}

 \implies \rm20( {x}^{2}  + 1) = 41(x)

 \implies \rm20 {x}^{2}  + 20 = 41x

 \implies \rm20 {x}^{2}  - 41x + 20 = 0

 \implies \rm20 {x}^{2}  - 25x - 16x + 20 = 0

 \implies \rm(4x - 5)(5x - 4)

 \implies \rm \: x =  \frac{5}{4} , \frac{4}{5}

Similar questions