Math, asked by PragyaTbia, 1 year ago

Solve the equation:  cot^{-1}(\frac{1 + x}{1 - x}) = \frac{1}{2}cot^{-1}(\frac{1}{x}),\ x \  \textgreater \  0\ and \ x\neq1 .

Answers

Answered by hukam0685
0

Answer:

x = 1/√3

x = -1/√3

Step-by-step explanation:

Solve the equation:  

cot^{-1}(\frac{1 + x}{1 - x}) = \frac{1}{2}cot^{-1}(\frac{1}{x})\\

here as we know that

 cot^{-1}x=tan^{-1}(\frac{1}{x})\\

2cot^{-1}(\frac{1 + x}{1 - x}) =cot^{-1}(\frac{1}{x}),\\\\\\2tan^{-1}(\frac{1 - x}{1 + x}) =tan^{-1}x\\\\

as

2tan^{-1}x=tan^{-1}(\frac{2x}{1-x^{2}})\\\\\\2tan^{-1}(\frac{1 - x}{1 + x})

= tan^{-1}\frac{\frac{2(1-x)}{(1+x)} }{1-(\frac{(1-x)}{(1+x)})^{2} }\\

=tan^{-1}\frac{\frac{2(1-x)}{(1+x)} }{\frac{(1+x^{2}+2x-1-x^{2}+2x)}{(1+x)^{2}} } \\\\\\=tan^{-1}\frac{2(1-x)(1+x)}{4x} \\\\=tan^{-1}\frac{2(1-x^{2})}{2x}

taking cot both sides

\frac{1 - x^{2}}{(2x)}=x\\\\

1 - x^{2}=2x^{2}\\\\1=3x^{2}\\\\x^{2}=\frac{1}{3}\\\\x=+-\sqrt{\frac{1}{3}}\\\\

x = 1/√3

x = -1/√3



Similar questions