Math, asked by saaho33, 1 year ago

Solve the equation..
 \frac{1}{x + 1}  +  \frac{2}{x + 2}  =  \frac{4}{x + 4}
Step by step... correct answer would be marked as brainlist.(.^_^.)

Answers

Answered by BhawnaAggarwalBT
1

Step-by-step explanation:

{}\frac{1}{x + 1} + \frac{2}{x + 2} = \frac{4}{x + 4}  \\  \\  \frac{(x + 2) + 2(x + 1)}{(x + 1)(x + 2)}  =  \frac{4}{x + 4}  \\  \\ \frac{x + 2 + 2x  + 2}{ {x}^{2} + 3x + 2 }   =  \frac{4}{x + 4} \\  \\   \frac{3x + 4}{ {x}^{2}  + 3x + 2}  =  \frac{4}{x + 4}  \\  \\ (3x + 4)(x + 4) = 4( {x}^{2}  + 3x + 2) \\  \\ 3 {x}^{2}  + 12x + 4x + 16 = 4 {x}^{2}  + 12x + 8 \\  \\ 3 {x}^{2}  + 16x + 16 = 4 {x}^{2}  + 12x + 8 \\  \\ 3{x}^{2}  + 16x + 16 - 4 {x}^{2}   -  12x  - 8  = 0\\  \\ -  {x}^{2}   + 4 x +  8= 0 \\  \\  {x}^{2}   - 4x   - 8 = 0 \\  \\ d \:  =  {b}^{2}  - 4ac \\  \\ d \:  =  {( - 4)}^{2}  - 4 \times 1 \times ( - 8) \\  \\ d = 1 6+ 32 \\  \\ d = 48\\  \\ x \:   =   \frac{ - b \:± \sqrt{d} }{2a}  \\  \\ x =  \frac{ 4\:± \sqrt{48} }{2 \times   1 }  \\  \\ x \:  =  \frac{4 \: ± 4 \sqrt{3} }{2}  \\  \\ x \:  =  \frac{2 \: ± 2 \sqrt{3} }{1}  \\  \\x = 2 \: ± 2 \sqrt{3} \:

hope this will help you

Similar questions