Math, asked by papafairy143, 1 day ago

Solve the equation

 log_{(2x + 3)}( {6x}^{2} + 23x + 21 )  = 4 -  log_{3x + 7}( {4x}^{2} + 12x + 9 )

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given Logarithmic equation is

\rm \: log_{(2x + 3)}( {6x}^{2} + 23x + 21 ) = 4 - log_{3x + 7}( {4x}^{2} + 12x + 9 )

Let first define the domain

2x + 3 > 0, it implies x > - 3/2

2x + 3 ≠ 1, it implies x ≠ - 1

3x + 7 > 0, it implies x > - 7/3

3x + 7 ≠ 1, it implies x ≠ - 2

Now, Consider

\rm \: log_{(2x + 3)}( {6x}^{2} + 23x + 21 ) = 4 - log_{3x + 7}( {4x}^{2} + 12x + 9 )

On splitting the middle terms, we get

\rm \: log_{(2x + 3)}( {6x}^{2} + 9x + 14x + 21 ) = 4 - log_{3x + 7}( {4x}^{2} + 6x + 6x + 9 )

\rm \: log_{(2x + 3)}(3x(2x + 3) +7(2x + 3)) = 4 - log_{3x + 7}( 2x(2x + 3) + 3(2x + 3))

\rm \: log_{(2x + 3)}((2x + 3)(3x + 7)) = 4 - log_{3x + 7}( (2x + 3)(2x + 3))

We know,

\boxed{\sf{  \:  \:  log_{a}(ab) = 1 +  log_{a}(b) \:  \: }} \\

So, using this result, we get

\rm \:1 +  log_{(2x + 3)}(3x + 7) = 4 - log_{3x + 7}(2x + 3)^{2}

\rm \:log_{(2x + 3)}(3x + 7) = 3 - 2log_{3x + 7}(2x + 3) \\

We know,

\boxed{\sf{  \:  \:  log_{x}(y) \:  =  \:  \frac{1}{ log_{y}(x) } \: }} \\

So, using this, the above can be rewritten as

\rm \:log_{(2x + 3)}(3x + 7) = 3 -  \dfrac{2}{log_{(2x + 3)}(3x + 7)} \\

\rm \:log_{(2x + 3)}(3x + 7) +  \dfrac{2}{log_{(2x + 3)}(3x + 7)} - 3 = 0 \\

Let assume that

\rm \: log_{(2x + 3)}(3x + 7) = y

So, above expression can be rewritten as

\rm \: y + \dfrac{2}{y} - 3 = 0

\rm \:  \dfrac{ {y}^{2} +  2 - 3y}{y} = 0

\rm \:  {y}^{2} - 3y + 2 = 0

\rm \:  {y}^{2} - 2y - y + 2 = 0

\rm \:  y(y - 2) - 1(y - 2) = 0

\rm \:  (y - 2)(y - 1) = 0

\rm\implies \:y = 2 \:  \: or \:  \: y = 1

So, Consider y = 2

\rm \: log_{(2x + 3)}(3x + 7) = 2

\rm \: 3x + 7 =  {(2x + 3)}^{2}

\rm \: 3x + 7 =   {4x}^{2} + 9 + 12x

\rm \: {4x}^{2} + 9 + 12x - 3x - 7=0

\rm \: {4x}^{2} + 9x + 2 = 0

\rm \: {4x}^{2} +8x + x + 2=0

\rm \: 4x(x + 2) +1(x + 2) = 0

\rm \: (x + 2)(4x + 1) = 0

\rm\implies \:x = - 2 \:  \: or \:  \: x = - \dfrac{1}{4}

Now, x = - 2 rejected because of domain.

Now, Consider y = 1

\rm \: log_{(2x + 3)}(3x + 7) = 1

\rm \: 3x + 7 =  2x + 3

\rm\implies \:x = - 4

Now, x = - 4 is rejected as x > - 7/3

So,

\rm\implies \:\: x = - \dfrac{1}{4}

Similar questions