Math, asked by saryka, 3 months ago

Solve the equation:

\sf{\sqrt[4]{2x-1}=\dfrac{x^2}{4}+\dfrac{3}{4}}

Answers

Answered by mathdude500
92

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \sqrt[4]{2x - 1} = \dfrac{ {x}^{2} }{4}  + \dfrac{3}{4}

★ Domain of Given equation is

\rm :\longmapsto\:2x - 1 \geqslant 0 \:  \implies \: x \geqslant  \dfrac{1}{2}

★ Let assume that

 \purple{\rm :\longmapsto\:2x - 1 =  {y}^{2}} \\  \purple{\rm :\longmapsto\:x=\dfrac{ {y}^{2} + 1}{2} }

★ On substituting all these values, we get

\rm :\longmapsto\: \sqrt[4]{ {y}^{2} } = \dfrac{ {\bigg(\dfrac{ {y}^{2}  + 1}{2} \bigg) }^{2} }{4}  + \dfrac{3}{4}

\rm :\longmapsto\: \sqrt{y} = \dfrac{ {y}^{4} + 1 +  {2y}^{2}  }{16}  + \dfrac{3}{4}

\rm :\longmapsto\: \sqrt{y} = \dfrac{ {y}^{4} + 1 +  {2y}^{2} + 12}{16}

\rm :\longmapsto\: \sqrt{y} = \dfrac{ {y}^{4}+  {2y}^{2} + 13}{16}

★ Again assume that,

 \purple{\rm :\longmapsto\: Let \: \sqrt{y} = z \:  \implies \: y =  {z}^{2} }

\rm :\longmapsto\:z = \dfrac{ {z}^{8} +  {2z}^{4} + 13}{16}

\rm :\longmapsto\:16z =  {z}^{8} +  {2z}^{4} + 13

\rm :\longmapsto\:  {z}^{8} +  {2z}^{4}  - 16z+ 13 = 0

Using hit and trial method,

Let z = 1, we get

\rm :\longmapsto\:1 + 2 - 16 + 13 = 0

\rm :\longmapsto\:0 = 0

\bf\implies \:z - 1 \: is \: factor.

So, on long division we get

\rm :\longmapsto\:(z - 1)( {z}^{7} +  {z}^{6} +  {z}^{5} +  {z}^{4} +  {3z}^{3} +  {3z}^{2} + 3z - 13) = 0

\bf\implies \:z = 1

Or

\rm :\longmapsto\:{z}^{7} +  {z}^{6} +  {z}^{5} +  {z}^{4} +  {3z}^{3} +  {3z}^{2} + 3z - 13 = 0

Again, using hit and trial method,

Let z = 1, we get

\rm :\longmapsto\:1 + 1 + 1 + 1 + 3 + 3 + 3 - 13 = 0

\rm :\longmapsto\:0 = 0

\bf\implies \:z  - 1 \: is \: a \: factor.

So, on long division we get

\rm :\longmapsto\:(z - 1)( {z}^{6} +  {2z}^{5} +  {3z}^{4} +  {4z}^{3} +  {7z}^{2} + 10z + 13) = 0

\bf\implies \:z = 1

or

\rm :\longmapsto\:{z}^{6} +  {2z}^{5} +  {3z}^{4} +  {4z}^{3} +  {7z}^{2} + 10z + 13= 0

which can never be zero for any positive real value of z.

So,

Hence, we have

\rm :\longmapsto\:z = 1

\rm :\longmapsto\: \sqrt{y} = 1

\rm :\implies\:y = 1

\rm :\longmapsto\: \sqrt{2x - 1} = 1

\rm :\longmapsto\:2x - 1 = 1

\rm :\longmapsto\:2x = 1 + 1

\rm :\longmapsto\:2x =2

\bf\implies \:x = 1

Similar questions