Math, asked by kmithlesh5686, 7 months ago

solve the equation
(x + 1 \x - 1) -( x - 1 \x + 1) = 5 \6
Solve the equation ​

Answers

Answered by TheWonderWall
19

Answer:

 \frac{x + 1}{x - 1}  -  \frac{x - 1}{x + 1}  =  \frac{5}{6}  \\  \\  =  >  \frac{(x + 1)(x + 1) - (x - 1)(x - 1)}{(x - 1)(x + 1)}  =  \frac{5}{6}  \\  \\  =  >  \frac{(x + 1) ^{2}  -(  {x - 1})^{2} }{ {x}^{2} -  {1}^{2}  }  =  \frac{5}{6}  \\  \\  =  >  \frac{ {x}^{2}  + 2x + 1 - ( {x}^{2} - 2x + 1) }{ {x}^{2}  - 1}  =  \frac{5}{6}  \\  \\  =  >  \frac{ {x}^{2} + 2x + 1 -  {x}^{2}  + 2x - 1 }{ {x}^{2}   -  1}  =  \frac{5}{6}  \\  \\  =  >  \frac{4x}{ {x}^{2} - 1 }  =  \frac{5}{6}  \\  \\  =  >  {5x}^{2}  - 5 = 24x \\  \\  =  >  {5x}^{2}  - 5 - 24x = 0 \\  \\  =  >  {5x}^{2}  - 24x - 5 = 0 \\  \\  =  >  {5x}^{2}  - (25 - 1)x - 5 = 0 \\  \\  =  >  {5x}^{2}  - 25x + x - 5 = 0 \\  \\  =  > 5x( x - 5) + 1(x - 5) = 0 \\  \\  =  > (5x + 1)(x - 5) = 0 \\  \\ either \: 5x + 1 = 0 \\  \\  =  > x =  \frac{ - 1}{5}  \\  \\ or \: x - 5 = 0 \\  \\  =  > x = 5

hope it helps uH

scroll to see it properly

Similar questions