Math, asked by aryan021212, 1 day ago

Solve the equation to find general solution

\sf \: {2sin}^{2}x - 5sinx \: cosx -  {8cos}^{2}x =  - 2

Answers

Answered by mathdude500
18

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm \:  {2sin}^{2}x - 5sinx \: cosx \:  -  \:  {8cos}^{2}x =  - 2

To simplify this, Let's first check by substituting cosx = 0, whether cosx is 0 or not.

So, we get

\rm \:  {2sin}^{2}x =  - 2

\rm \:  {sin}^{2}x =  - 1

which is not possible as square number can never be negative.

So,

\rm\implies \:cosx \:  \ne \: 0 \\

Now, Consider again

\rm \:  {2sin}^{2}x - 5sinx \: cosx \:  -  \:  {8cos}^{2}x =  - 2

can be rewritten as

\rm \: \dfrac{{2sin}^{2}x - 5sinx \: cosx \:  -  \:  {8cos}^{2}x}{ {cos}^{2}x }  =  - \dfrac{2}{ {cos}^{2}x}

\rm \: 2 {tan}^{2}x - 5tanx - 8 =  - 2 {sec}^{2}x

\rm \: 2 {tan}^{2}x - 5tanx - 8 =  - 2 (1 + {tan}^{2}x) \\

\rm \: 2 {tan}^{2}x - 5tanx - 8 =  - 2  - 2 {tan}^{2}x \\

\rm \: 4{tan}^{2}x - 5tanx - 6 =  0 \\

\rm \: 4{tan}^{2}x - 8tanx + 3tanx - 6 =  0 \\

\rm \: 4tanx(tanx - 2) + 3(tanx - 2) = 0 \\

\rm \: (tanx - 2)(4tanx + 3) = 0 \\

\rm\implies \:tanx = 2 \:  \: or \:  \: tanx =  - \dfrac{3}{4}

Let consider

\rm \: tanx = 2

\rm \: tanx = tan \alpha  \:  \:  \:  \: where \:  \alpha  =  {tan}^{ - 1}2

\rm\implies \:x = n\pi +  \alpha  \:  \:  \:  \: \forall \: n \in \: Z

\rm\implies \:x = n\pi +  {tan}^{ - 1}2   \:  \:  \:  \: \forall \: n \in \: Z \\

Now, Consider

\rm \: tanx =  - \dfrac{3}{4}

\rm \: tanx = tan \beta  \:  \:  \: where \:  \beta  =  {tan}^{ - 1}\bigg( - \dfrac{3}{4}\bigg) \\

\rm\implies \:x = p\pi +  \beta  \:  \:  \:  \:  \: \forall \: p \in \: Z

\rm\implies \:x = p\pi +  {tan}^{ - 1}\bigg( - \dfrac{3}{4}\bigg)  \:  \:  \:  \:  \: \forall \: p \in \: Z \\

\rm\implies \:x = p\pi  - {tan}^{ - 1}\bigg(\dfrac{3}{4}\bigg)  \:  \:  \:  \:  \: \forall \: p \in \: Z \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULA USED

\boxed{\tt{  \:  \: tanx = tany  \:  \: \rm\implies \: \sf x = n\pi + y \:  \:  \:  \: \forall \: n \in \: Z \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Answered by Anonymous
31

\sf\red{Solution:-}

  • Answer in the above attachment

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

@Shivam

#BeBrainly

Attachments:
Similar questions