Math, asked by papafairy143, 16 days ago

Solve the equation to find number of integral roots

 \frac{ {x}^{2} }{ {(x + 1)}^{2} } +  {x}^{2}  = 3

Answers

Answered by user0888
35

I left a screenshot of my answer since \LaTeX doesn't work properly. Please view the attachment.

\textbf{The first case.}

\rm{(x<-1)}

\rm{\dfrac{x}{x+1}>1}

\rm{\therefore \left(\dfrac{x}{x+1}\right)^{2}>1}

\rm{\left(\dfrac{x}{x+1}\right)^{2}+x^{2}=3}

0</p><p>[tex]\textrm{$\therefore$ No solution.}

\textbf{The second case.}

\rm{(x&gt;-1)}

\rm{\dfrac{x}{x+1}&lt;1}

\rm{\therefore 0&lt;\left(\dfrac{x}{x+1}\right)^{2}&lt;1}

\rm{\left(\dfrac{x}{x+1}\right)^{2}+x^{2}=3}

2-1

\textrm{$\therefore$ No solution.}

Hence

\rm{\cdots\longrightarrow\boxed{\rm\left(\dfrac{x}{x+1}\right)^{2}+x^{2}=3\ has\ no\ integral\ solution.}}

Attachments:
Answered by mathdude500
42

\large\underline{\sf{Solution-}}

Given equation is

\rm \: \dfrac{ {x}^{2} }{ {(x + 1)}^{2} } + {x}^{2} = 3 \\

can be rewritten as

\rm \: {x}^{2}  +   {\bigg(\dfrac{x}{x + 1}  \bigg) }^{2} = 3 \\

We know,

\boxed{ \rm{ \: {x}^{2} +  {y}^{2} =  {(x - y)}^{2}  + 2xy \:  \: }} \\

So, using this identity, we get

\rm \: {\bigg(x - \dfrac{x}{x + 1}  \bigg) }^{2}  + 2 \times x \times  \frac{x}{x + 1} = 3 \\

\rm \: {\bigg(\dfrac{ {x}^{2}  + x - x}{x + 1}  \bigg) }^{2}  + \frac{ 2{x}^{2} }{x + 1} = 3 \\

\rm \: {\bigg(\dfrac{ {x}^{2}}{x + 1}  \bigg) }^{2}  + \frac{ 2{x}^{2} }{x + 1} -  3 = 0 \\

Let assume that

 \red{\rm \:  \dfrac{ {x}^{2} }{x + 1} = y \: } \\

So, above equation can be rewritten as

\rm \:  {y}^{2} + 2y  - 3  = 0\\

\rm \:  {y}^{2} + 3y  - y - 3  = 0\\

\rm \: y(y + 3) - 1(y + 3) = 0 \\

\rm \: (y + 3)(y - 1) = 0 \\

\bf\implies \:y =  - 3 \:  \: or \:  \: y =  1 \\

So, Consider

\rm \: y =  - 3 \\

\rm \:  \frac{ {x}^{2} }{x + 1}  =  - 3 \\

\rm \:  {x}^{2} =  - 3x - 3 \\

\rm \:  {x}^{2}  + 3x + 3 = 0 \\

Now, Discriminant = 9 - 12 = - 3 < 0

\rm\implies \: {x}^{2}  + 3x + 3 = 0 \: have \: no \: real \: root. \\

Now, Consider

\rm \: y = 1 \\

\rm \:  \frac{ {x}^{2} }{x + 1}  =  1 \\

\rm \:  {x}^{2} = x + 1 \\

\rm \:  {x}^{2} - x - 1 = 0 \\

So, using Quadratic formula, we get

\rm \: x  \: =  \: \dfrac{ - ( - 1) \:  \pm \:  \sqrt{ {( - 1)}^{2}  -  4(1)( - 1)} }{2(1)}  \\

\rm \: x  \: =  \: \dfrac{ 1 \:  \pm \:  \sqrt{ 1 + 4} }{2}  \\

\rm\implies \:\rm \: x  \: =  \: \dfrac{ 1 \:  \pm \:  \sqrt{5} }{2}  \\

So, it means given equation

\rm \: \dfrac{ {x}^{2} }{ {(x + 1)}^{2} } + {x}^{2} = 3  \: have \: irrational \: roots\\

So,

\rm\implies \boxed{ \rm{ \dfrac{ {x}^{2} }{{(x + 1)}^{2} }+{x}^{2} = 3\: have \:no\:integeral\:roots\: }}\\

Similar questions