Math, asked by Ophe, 9 months ago

solve the equation using the quadratic formula
8x²+6x-5=0


Answers

Answered by IPRINCEI
3

\huge{\fbox{\fbox{\bigstar{\mathfrak{\red{Answer}}}}}}

 \huge \implies \large \sf \: 8 {x}^{2}  + 6x - 5 = 0 \\  \huge \bullet \large \sf \: d =  {b}^{2}  - 4ac \\  \small \implies \large \sf \:  {6}^{2}  - 4(8)( - 5) \\  \small \implies \large \sf \: 36 + 32(5) \\  \small \implies \large \sf \: 36 + 160 \\  \small \implies \large \sf \: 196 \\  \huge \implies \large \sf \:  x =  \frac{{ - b  ± \sqrt{d} } }{2a}  \\  \small \implies \large \sf \: x =  \frac{6 ±   \sqrt{196}  }{2(8)}  \\  \small \implies \large \sf \: \frac{ - 6 + 14}{18}  \\   \small \implies \large \sf \: x =  \cancel \frac{8}{18}  =    \:  \frac{4}{9}  \\  \large \implies \large \sf \: x =  \frac{ - 6 - 14}{18}  \\  \small \implies \large \sf \:  x =   \cancel\frac{ - 20}{18}  =  \frac{ - 10}{9}

 \huge \implies \large\boxed{\boxed{\underline{\red{\bold{ x=-\frac{10}{9} \:and x=\frac{4}{9} }}}}}\\

Answered by FantasticQueen
2

\huge{\underline{\tt{SoluTion}}}

 \huge \implies \large \tt \: 8 {x}^{2}  + 6x - 5 = 0 \\  \huge \implies\large \tt \: d =  {b}^{2}  - 4ac \\  \small \implies \large \tt\:  {6}^{2}  - 4(8)( - 5) \\  \small \implies \large \tt\: 36 + 32(5) \\  \small \implies \large \tt \: 36 + 160 \\  \small \implies \large \sf \: 196 \\  \huge \implies \large \tt \:  x =  \frac{{ - b  ±  \sqrt{d} } }{2a}  \\  \small \implies \large \tt\: x =  \frac{6 ±   \sqrt{196}  }{2(8)}  \\  \small \implies \large \tt\: \frac{ - 6 + 14}{18}  \\   \small \implies \large \tt\: x =  \cancel \frac{8}{18}  =    \:  \frac{4}{9}  \\  \large \implies \large \tt\: x =  \frac{ - 6 - 14}{18}  \\  \small \implies \large \tt \:  x =   \cancel\frac{ - 20}{18}  =  \frac{ - 10}{9}

Similar questions