Solve the equation
X
(1+y²) dx+y(1 + x^2
) dy=
0
Answers
According to the conditions,
= \frac{ x + 17}{x + 8 - 1} = \frac{3}{2}=
x+8−1
x+17
=
2
3
= > \frac{x + 17}{x + 7} = \frac{3}{2}=>
x+7
x+17
=
2
3
\begin{gathered} = > \frac{(x + 17)}{(x + 7)} \times (x + 7) = \frac{3}{2} \times (x + 7) \\ \\ (Multiplying \: both \: sides \: by \: (x + 7).)\end{gathered}
=>
(x+7)
(x+17)
×(x+7)=
2
3
×(x+7)
(Multiplyingbothsidesby(x+7).)
= > x + 17 = \frac{3}{2} (x + 7)=>x+17=
2
3
(x+7)
\begin{gathered} = > 2x(x + 17) = 2 \times \frac{3}{2} (x + 7) \\ \\ \: \: \: \: \: \: \: \: (Multiplying \: both \: sides \: by \: 2.)\end{gathered}
=>2x(x+17)=2×
2
3
(x+7)
(Multiplyingbothsidesby2.)
= > 2x + 34 = 3x + 21=>2x+34=3x+21
\begin{gathered} = > 2x - 3x = 21 - 34 \\ \\ (Transporting \: 3x \: to \: L.H.S. \: and \: 34 \: to \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: R.H.S.)\end{gathered}
=>2x−3x=21−34