Math, asked by parkashchand, 11 months ago

solve the equation X square + 1 is equal to a upon A + B Into X + A + B Upon A Into X​


amitnrw: Rewrite Question Properly

Answers

Answered by MaheswariS
0

Answer:

Solution

x=\frac{a+b}{a},\frac{a}{a+b}

Step-by-step explanation:

Given:

x^2+1=\frac{a}{a+b}x+\frac{(a+b)}{a}x

\implies\:x^2+1=x[\frac{a}{a+b}+\frac{(a+b)}{a}]

\implies\:x^2+1=x[\frac{a^2+(a+b)^2}{a(a+b)}]

\implies\:(x^2+1)a(a+b)=x(a^2+(a+b)^2)

\implies\:a(a+b)x^2+a(a+b)=x(a^2+(a+b)^2)

\implies\:a(a+b)x^2-x(a^2+(a+b)^2)++a(a+b)=0

\implies\:a(a+b)x^2-a^2x-(a+b)^2x+a(a+b)=0

\implies\:ax((a+b)x-a)-(a+b)((a+b)x-a)=0

\implies\:(ax-(a+b))((a+b)x-a)=0

\implies\:ax-(a+b)=0\:or\:(a+b)x-a=0

\implies\:ax=a+b\:or\:(a+b)x=a

\implies\:\boxed{x=\frac{a+b}{a},\frac{a}{a+b}}

Similar questions