Math, asked by keshardewangan48, 8 months ago

solve the equation .you can use whichever method you want . 5x-8y=-1;3x-24/5y+3/5

Answers

Answered by Vyomsingh
7

Given:→

Equation 1:

5x - 8y = -1

Equation 2: (With Correction)

3x  +   \dfrac{24y}{5}  =  \dfrac{  3}{5}

______________________________

Method used:-

✏️✒️{SUBSTITUTION METHOD}️️

_____________________________

SOLUTION:-

Taking Equ.1

 \implies5x - 8y = -1

\implies5x = -1 + 8y

\implies x =  \dfrac{-1 + 8y }{5}

NOW SUBSTITUTE THE VALUE OF X IN EQU.2

Taking Equ. 2

 \implies \: 3x  + \dfrac{24y}{5}  =  \dfrac{3}{5}

\implies \:  \dfrac{3 (- 1 + 8y)}{5}   + \dfrac{24y}{5}  =  \dfrac{3}{5}

\implies \:  \dfrac{ - 3 + 24y}{5}   +  \dfrac{24y}{5}  =  \dfrac{3}{5}

\implies \:   \dfrac{ - 3 + 24y + 24y}{5} =  \dfrac{3}{5}

 \implies \: 48y = 6

\implies \: y =  \dfrac{1}{8}

Then Value of x,

\implies x =  \dfrac{-1 + 8y }{5}

\implies x =  \dfrac{-1 + 8 \times  \dfrac{1}{8}  }{5}

\implies x =  0

Similar questions