Math, asked by 9037junial, 1 day ago

solve the equation |z|=z+1+2i​

Answers

Answered by chandan454380
2

Answer:

The answer is z=x+iy=\frac{3}{2}-2i

Step-by-step explanation:

Given equation is |z|=z+1+2i

Let z=x+iy\Rightarrow |z|=\sqrt{x^2+y^2}, so equation becomes

                           \Rightarrow \sqrt{x^2+y^2}=x+iy+1+2i\\\Rightarrow \sqrt{x^2+y^2}+0i=(x+1)+i(y+2)

Equate real and imaginary parts

        \sqrt{x^2+y^2}=x+1 \text{  and }0=y+2\Rightarrow y=-2

    Square first equation both sides

       x^2+y^2=x^2+2x+1\\\Rightarrow 4=2x+1\\\Rightarrow x=\frac{3}{2}

Hence the solution is z=x+iy=\frac{3}{2}-2i

Similar questions