Solve the equations:
1. ax+by = l,
bx+ay = m.
Answers
Answered by
1
Answer:
The given system of equations may be written as
ax+by−c=0
bx+ay−(1+c)=0
By cross-multiplication, we have
b×−(1+c)−a×−c
x
=
a×−(1+c)−b×−c
−y
=
a×a−b×b
1
⇒
−b(1+c)+ac
x
=
−a(1+c)+bc
−y
=
a
2
−b
2
1
⇒
ac−bc−b
x
=
ac−bc+a
y
=
a
2
−b
2
1
⇒
c(a−b)−b
x
=
c(a−b)+a
y
=
(a−b)(a+b)
1
⇒x=
(a−b)(a+b)
c(a−b)−b
and y=
(a−b)(a+b)
c(a−b)+a
⇒x=
a+b
c
−
(a−b)(a+b)
b
and y=
a+b
c
+
(a−b)(a+b)
a
Hence, the solution of the given system of equations is
x=
a+b
c
−
a
2
−b
2
b
,y=
a+b
c
+
a
2
−b
2
a
.
Similar questions