Math, asked by gullnazpanhwer123, 1 month ago

Solve the equations 2x-y=-2;x+2y=3 with the help of Cramer's rule​

Answers

Answered by mathdude500
0

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:2x - y =  - 2

and

\rm :\longmapsto\:x + 2y = 3

The above equations in matrix form can be represented as

\rm :\longmapsto\:A = \bigg[ \begin{matrix}2& - 1 \\ 1&2 \end{matrix} \bigg]

\rm :\longmapsto\:X \:  =  \: \begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}

\rm :\longmapsto\:B \:  =  \: \begin{gathered}\sf \left[\begin{array}{c} - 2\\ 3\end{array}\right]\end{gathered}

So that, AX = B

Now, Consider

\rm :\longmapsto\: |A| = \begin{array}{|cc|}\sf 2 &\sf  - 1  \\ \sf 1 &\sf 2 \\\end{array}

\rm \:  =  \:  \: 2 \times 2 - 1 \times ( - 1)

\rm \:  =  \:  \: 4 + 1

\rm \:  =  \:  \: 5

\bf\implies \: |A|  = 5

This implies, system of equations is consistent having unique solution.

Now, Consider

\rm :\longmapsto\: D_1= \begin{array}{|cc|}\sf  - 2 &\sf  - 1  \\ \sf 3 &\sf 2 \\\end{array}

\rm \:  =  \:  \:  - 2 \times 2 - 3 \times ( - 1)

\rm \:  =  \:  \:  - 4 + 3

\rm \:  =  \:  \:  - 1

\bf\implies \:D_1 =  - 1

\rm :\longmapsto\:  D_2= \begin{array}{|cc|}\sf 2 &\sf  - 2  \\ \sf 1 &\sf 3 \\\end{array}

\rm \:  =  \:  \: 3 \times 2 - 1 \times ( - 2)

\rm \:  =  \:  \: 6 + 2

\rm \:  =  \:  \: 8

\bf\implies \:D_2 = 8

Hence,

\rm :\longmapsto\:x = \dfrac{D_1}{ |A| }  = \dfrac{ - 1}{5}

and

\rm :\longmapsto\:y= \dfrac{D_2}{ |A| }  = \dfrac{8}{5}

Verification :-

Consider

\rm :\longmapsto\:x + 2y = 3

On substituting the values of x and y, we get

\rm :\longmapsto\:\dfrac{ - 1}{5}  +2 \times  \dfrac{8}{5}  = 3

\rm :\longmapsto\:\dfrac{ - 1}{5}  +\dfrac{16}{5}  = 3

\rm :\longmapsto\:\dfrac{ - 1 + 16}{5}  = 3

\rm :\longmapsto\:\dfrac{15}{5}  = 3

\rm :\longmapsto\:3  = 3

Hence,Verified

Similar questions