Math, asked by opcraft55, 1 month ago

Solve the equations and check the answer (No need to solve the No.1☺️ So I erase it)​

Attachments:

Answers

Answered by Anonymous
41

Answer :-

‎ ‎ ‎

 \sf (ii) \leadsto3(x - 3) = 5(2x - 1) \\  \\   \sf\leadsto3x - 9 = 10x - 5 \\  \\  \sf \leadsto - 9 + 5 = 10x - 3x \\  \\  \sf \leadsto - 4 = 7x \\  \\  \boxed{\sf  \leadsto  \green{x =  -  \dfrac{ 4}{7}} }

‎ ‎ ‎

 \sf (iii) \leadsto  \dfrac{2y + 9}{3} = 3y + 10 \\  \\  \sf \leadsto2y + 9 = 3(3y + 10) \\  \\  \sf \leadsto2y + 9 = 9y + 30 \\  \\  \sf \leadsto2y - 9y = 30 - 9 \\  \\  \sf \leadsto - 7y = 21 \\  \\  \sf \leadsto y =  \dfrac{21}{ - 7} \\  \\   \boxed{\sf \leadsto  \pink{y =  - 3 }}

‎ ‎ ‎

 \sf (iv) \leadsto   2(x - 1) - 3(x - 2) = 4(x - 3) + 5(x - 4) \\  \\ \sf \leadsto 2x - 2 - 3x + 6 = 4x - 12 + 5x - 20 \\  \\ \sf \leadsto4 - x = 9x - 32 \\  \\ \sf \leadsto32 + 4 = 9x + x \\  \\ \sf \leadsto36 = 10x \\  \\ \sf \leadsto \dfrac{36}{10}  = x \\  \\ \boxed{ \sf \leadsto  \red{\dfrac{18}{5}  = x}}

‎ ‎ ‎

 \sf (v) \leadsto   \dfrac{2x}{3}  +  \dfrac{5}{6}  =  \dfrac{13}{6}  \\  \\ \sf \leadsto \dfrac{2x}{3}  =  \dfrac{13}{6}  -  \dfrac{5}{6}  \\  \\ \sf \leadsto \dfrac{2x}{3}  =  \dfrac{13 - 5}{6}  \\  \\ \sf \leadsto \dfrac{2x}{3}  =  \dfrac{8}{6}   \\ \\ \sf \leadsto x =  \dfrac{8}{6}  \times  \dfrac{3}{2}  \\  \\  \boxed{\sf \leadsto  \purple{x = 2}}

‎ ‎ ‎

 \sf (vi) \leadsto   \dfrac{x + 2}{3}   + 5 = 17 \\  \\ \sf \leadsto  \dfrac{x + 2}{3}  = 17 - 5 \\  \\\sf \leadsto  \dfrac{x + 2}{3}  = 12 \\  \\ \sf \leadsto x + 2 = 12(3) \\  \\ \sf \leadsto x  + 2 = 36 \\  \\ \sf \leadsto x = 36 - 2 \\  \\ \boxed{ \sf \leadsto  \orange{x = 34}}

‎ ‎ ‎

 \sf (vii) \leadsto   3y +  \dfrac{5}{8}  =  \dfrac{11}{8}  \\  \\ \sf \leadsto3y =  \dfrac{11}{8}  -  \dfrac{5}{8}  \\  \\ \sf \leadsto3y =  \dfrac{11 - 5}{8}  \\  \\ \sf \leadsto3y =  \dfrac{6}{8}  \\  \\\sf \leadsto y =  \dfrac{6}{8 \times 3}   \\  \\ \boxed{ \sf \leadsto  \pink{y =  \dfrac{1}{4} }}

‎ ‎ ‎

 \sf (viii) \leadsto    \dfrac{3m + 2}{3} =  \dfrac{17}{3}   \\  \\ \sf \leadsto 3m + 2 =  \dfrac{17 \times 3}{3}  \\  \\ \sf \leadsto3m + 2 = 17 \\  \\ \sf \leadsto3m = 17 - 2 \\  \\ \sf \leadsto3m = 15 \\  \\ \sf \leadsto m =  \dfrac{15}{3}  \\  \\  \boxed{\sf \leadsto \green{m =  5} }

‎ ‎ ‎

 \sf (ix) \leadsto  2.5x + 3.5 = 6 \\  \\ \sf \leadsto2.5x = 6 - 3.5 \\  \\ \sf \leadsto2.5x = 2.5 \\  \\ \sf \leadsto x =  \dfrac{2.5}{2.5}  \\  \\  \boxed{\sf \leadsto  \purple{x = 1}}

Answered by ritendramarkam1129
2

Step-by-step explanation:

if you like my answer press heart

Attachments:
Similar questions