Math, asked by surhhikumari, 11 months ago

solve the equations by matrix method x+2y-3z=6,2x-y+4z=2,2x+3y-2z=14​

Answers

Answered by shadowsabers03
2

We have the matrix,

\left[\begin{array}{ccc|c}1&2&-3&6\\2&-1&4&2\\2&3&-2&14\end{array}\right]

Let's begin!

\left[\begin{array}{ccc|c}1&2&-3&6\\2&-1&4&2\\2&3&-2&14\end{array}\right]\xrightarrow{R_3-R_2\to R_2}\left[\begin{array}{ccc|c}1&2&-3&6\\0&4&-6&12\\2&3&-2&14\end{array}\right]\\\\\\\left[\begin{array}{ccc|c}1&2&-3&6\\0&4&-6&12\\2&3&-2&14\end{array}\right]\xrightarrow{R_3-2R_1\to R_3}\left[\begin{array}{ccc|c}1&2&-3&6\\0&4&-6&12\\0&-1&4&2\end{array}\right]

\left[\begin{array}{ccc|c}1&2&-3&6\\0&4&-6&12\\0&-1&4&2\end{array}\right]\xrightarrow{R_1-\frac{1}{2}R_2\to R_1}\left[\begin{array}{ccc|c}1&0&0&0\\0&4&-6&12\\0&-1&4&2\end{array}\right]\\\\\\\left[\begin{array}{ccc|c}1&0&0&0\\0&4&-6&12\\0&-1&4&2\end{array}\right]\xrightarrow{R_2+3R_3\to R_2}\left[\begin{array}{ccc|c}1&0&0&0\\0&1&6&18\\0&-1&4&2\end{array}\right]

\left[\begin{array}{ccc|c}1&0&0&0\\0&1&6&18\\0&-1&4&2\end{array}\right]\xrightarrow{R_2+R_3\to R_3}\left[\begin{array}{ccc|c}1&0&0&0\\0&1&6&18\\0&0&10&20\end{array}\right]\\\\\\\left[\begin{array}{ccc|c}1&0&0&0\\0&1&6&18\\0&0&10&20\end{array}\right]\xrightarrow{\frac{1}{10}R_3\to R_3}\left[\begin{array}{ccc|c}1&0&0&0\\0&1&6&18\\0&0&1&2\end{array}\right]

\left[\begin{array}{ccc|c}1&0&0&0\\0&1&6&18\\0&0&1&2\end{array}\right]\xrightarrow{R_2-6R_3\to R_2}\left[\begin{array}{ccc|c}1&0&0&0\\0&1&0&6\\0&0&1&2\end{array}\right]

Finally,

\mathbf{x=0\quad;\quad y=6\quad;\quad z=2}

Similar questions
Math, 5 months ago