Math, asked by monurajkonwar456, 6 months ago

solve the equations by transposition method and check the result : 1: 5/8(x-6)=25+4x



ৡDon't give spam answersৡ​

Answers

Answered by ITZAYOUTUBER
0

\huge\purple{mark brainliest please}

\large{\mathbb{\purple{\boxed{\green{\underbrace{\overbrace{\red{\boxed{\red{♪HLO♪}}}}}}}}}}<br />\sf\huge\bold\red{༄❁❁❁❁❁༄ }HLO GUYS

muje corona ka vaccine mil gya he

agr kis chhai to muje contact kre. (WHO)\sf\huge\bold\purple{༄❁❁❁❁❁༄ }

name \: the \: colours \: of \: the \: rainbow \\

\huge\underline{\overline{\mid{\bold{\red{Don't..Spam-}}\mid}}}

\huge\mathtt\purple{\boxed{\underbrace\pink{\overbrace\green{ question}}}}

{\blue{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\fbox{\red{??}}}}}}}}}}}}}}}}}}}}}}}}}}}}

\begin{gathered}\begin{gathered}\sf \large \red{\underline{ Question:-}}\\\\\end{gathered}\end{gathered}Question:−

The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.

\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Given:-}}\\\\\end{gathered}\end{gathered}Given:−

The measures of two adjacent angles of a parallelogram are in the ratio 3:2.

\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{To \: Find:-}}\\\\\end{gathered}\end{gathered}ToFind:−

Find the measure of each of the angles of the parallelogram.

\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Solution :- }}\\\\\end{gathered}\end{gathered}Solution:−

\text{ \sf suppose the angles be equal to 3x and 2x} suppose the angles be equal to 3x and 2x

\boxed{ \sf \orange{ we \: have \: ardjacent \: angles \: of \: a \: parallelogram \: = 180}}wehaveardjacentanglesofaparallelogram=180

\begin{gathered}\begin{gathered}\\ \sf \underline{ \green{putting \: all \: values : }}\end{gathered}\end{gathered}puttingallvalues:

\begin{gathered}\begin{gathered}\: \\ \sf \to \: 3x + 2 x = 180\: \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \:5x = 180 \\ \\ \: \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \frac{180}{5} \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \cancel{ \frac{180}{5} } \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \purple{x = 36}\\\\\end{gathered}\end{gathered}→3x+2x=180→5x=180→x=5180→x=5180→x=36

\begin{gathered}\begin{gathered}\sf \to \: 3x \\ \sf \to \: 3 \times 36 \\ \sf \to \red{108 }\\ \\ \\ \sf \to \: 2x \\ \sf \to \: 2 \times 36 \\ \sf \to \orange{72} \\\end{gathered}\end{gathered}→3x→3×36→108→2x→2×36→72

\sf \large\underline{ \blue{verification }} \huge \dagverification†

\begin{gathered}\begin{gathered}\\ \\ \sf \to 3x + 2x = 180 \\ \\ \sf \to \: 3 \times 36 +2 \times 36 = 180 \\ \\ \sf \to \: 108 + 72 = 180 \\ \\ \sf \to \:180 = 180 \\ \\ \large \underline{ \pink{ \sf \: hence \: verified}} \huge \dag\end{gathered}\end{gathered}→3x+2x=180→3×36+2×36=180→108+72=180→180=180henceverified†

Answered by SoulFulKamal
0

Question ⤵️

solve the equations by transposition method and check the result : 1: 5/8(x-6)=25+4x.

Answer ⤵️

(i) x + y =5 and 2x –3y = 4

By elimination method

x + y =5 ... (i)

2x –3y = 4 ... (ii)

Multiplying equation (i) by (ii), we get

2x + 2y = 10 ... (iii)

2x –3y = 4 ... (ii)

Subtracting equation (ii) from equation (iii), we get

5y = 6

y = 6/5

Putting the value in equation (i), we get

x = 5 - (6/5) = 19/5

Hence, x = 19/5 and y = 6/5

By substitution methodx + y = 5 ... (i)

Subtracting y both side, we get

x = 5 - y ... (iv)

Putting the value of x in equation (ii) we get

2(5 – y) – 3y = 4

-5y = - 6

y = -6/-5 = 6/5

Putting the value of y in equation (iv) we get

x = 5 – 6/5

x = 19/5

Hence, x = 19/5 and y = 6/5 again

(ii) 3x + 4y = 10 and 2x – 2y = 2

By elimination method

3x + 4y = 10 .... (i)

2x – 2y = 2 ... (ii)

Multiplying equation (ii) by 2, we get

4x – 4y = 4 ... (iii)

3x + 4y = 10 ... (i)

Adding equation (i) and (iii), we get

7x + 0 = 14

Dividing both side by 7, we get

x = 14/7 = 2

Putting in equation (i), we get

3x + 4y = 10

3(2) + 4y = 10

6 + 4y = 10

4y = 10 – 6

4y = 4

y = 4/4 = 1

Hence, answer is x = 2, y = 1

By substitution method

3x + 4y = 10 ... (i)

Subtract 3x both side, we get

4y = 10 – 3x

Divide by 4 we get

y = (10 - 3x )/4

Putting this value in equation (ii), we get

2x – 2y = 2 ... (i)

2x – 2(10 - 3x )/4) = 2

Multiply by 4 we get

8x - 2(10 – 3x) = 8

8x - 20 + 6x = 8

14x = 28

x = 28/14 = 2

y = (10 - 3x)/4

y = 4/4 = 1

Hope it helps you ✌️⚡⚡

Step-by-step explanation:

please make me brainliest

Similar questions