Math, asked by sh0666292, 10 hours ago

solve the equations
d^3y/dx^3 -3d^2y/dx^2 + 4y=0​

Answers

Answered by vikkiain
1

Answer:

y - 3xy +  \frac{2 {x}^{3}y }{3}  =  \frac{ {x}^{2}c }{2}  + d

Step-by-step explanation:

 \frac{ {d}^{3 }y }{ d{x}^{3} }   - 3 \frac{ {d}^{2}y}{d {x}^{2} }  + 4y = 0 \\ \: integration  \: on \: both \: sides \\  \frac{ {d}^{2 }y }{ d{x}^{2} }   - 3 \frac{ {d}y}{d {x} }  + 4yx = c \\  again \:  \: integration \: on \: both \: sides \\  \frac{ {d}y }{ d{x} }   - 3y + 2{x}^{2}y = cx \\ again \:  \: integration \: on \: both \: sides \\ y - 3xy +  \frac{2 {x}^{3}y }{3}  =  \frac{ {x}^{2}c }{2}  + d

Similar questions