Math, asked by acoopervaldez06, 9 months ago

Solve the equations in Parts A and B using inverse operations. Check your solutions. In your final answer, include all of your work. Part A: 5+x^2= 2x^2 + 13 Part B: 5+x^3=2x^3+13

Answers

Answered by takhurshanu333
1

Answer:

A). x=\sqrt{8i}x=

8i

B). x=2ix=2i

Step-by-step explanation:

Part A

\begin{gathered}5+x^{2} =2*x^{2} +13\\5-5+x^{2}-2*x^{2} =2*x^{2} -2*x^{2}+13-5 \\x^{2}-2*x^{2}=13-5\\-x^{2}=8\\x^{2}=-8\\x=\sqrt{8i}\end{gathered}

5+x

2

=2∗x

2

+13

5−5+x

2

−2∗x

2

=2∗x

2

−2∗x

2

+13−5

x

2

−2∗x

2

=13−5

−x

2

=8

x

2

=−8

x=

8i

Check:

5+(\sqrt{8i})^{2}=2*(\sqrt{8i})^{2}+135+(

8i

)

2

=2∗(

8i

)

2

+13

\begin{gathered}5+8i^{2}=2*8i^{2}+13\\5+8(-1)=2*8(-1)+13\\5-8=-16+13\\-3=-3\end{gathered}

5+8i

2

=2∗8i

2

+13

5+8(−1)=2∗8(−1)+13

5−8=−16+13

−3=−3

Part B

\begin{gathered}5+x^{3}=2*x^{3}+13\\5-5+x^{3}=2*x^{3}-2*x^{3}+13-5\\x^{3}-2*x^{3}=13-5\\-x^{3}=8\\x^{3}=-8\\x=-8^{\frac{1}{3} } \\x=8i^{\frac{1}{3} }\\x=2i\end{gathered}

5+x

3

=2∗x

3

+13

5−5+x

3

=2∗x

3

−2∗x

3

+13−5

x

3

−2∗x

3

=13−5

−x

3

=8

x

3

=−8

x=−8

3

1

x=8i

3

1

x=2i

Check:

\begin{gathered}5+(2i)^{3}=2*(2i)^{3}+13\\5+8i^{3}=2*8i^{3}+13\\5+8-i=16-i+13\\5-8i=-16i+13\\5-13-8i+8i=-16i+8i+13-13\\-8=-8i\\-8=-8\end{gathered}

5+(2i)

3

=2∗(2i)

3

+13

5+8i

3

=2∗8i

3

+13

5+8−i=16−i+13

5−8i=−16i+13

5−13−8i+8i=−16i+8i+13−13

−8=−8i

−8=−8

Step-by-step explanation:

and please follow me please please and Mark me in brain list

Answered by vowock123
0

Answer:

loser

Step-by-step explanation:

Similar questions