Math, asked by guptaananya2005, 1 month ago

Solve the equations

\sf \:  {10}^{ \frac{2}{x} }  +  {25}^{ \frac{1}{x} }  =  \frac{17}{4}  \times  {50}^{ \frac{1}{x} }

Spammers please far away.

Brainly Mods, Brainly stars or best user or genius.

Please answer.

Don't co py and pa ste from Bro wser!!!!

Otherwise reported. ​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given equation is

 \rm :\longmapsto\:{\bigg[10\bigg]}^{\dfrac{2}{x} } + {\bigg[25\bigg]}^{\dfrac{1}{x} } = \dfrac{17}{4} \times {\bigg[50\bigg]}^{\dfrac{1}{x} }

can be rewritten as

 \rm :\longmapsto\:{\bigg[ {10}^{2} \bigg]}^{\dfrac{1}{x} } + {\bigg[25\bigg]}^{\dfrac{1}{x} } = \dfrac{17}{4} \times {\bigg[50\bigg]}^{\dfrac{1}{x} }

 \rm :\longmapsto\:{\bigg[100 \bigg]}^{\dfrac{1}{x} } + {\bigg[25\bigg]}^{\dfrac{1}{x} } = \dfrac{17}{4} \times {\bigg[50\bigg]}^{\dfrac{1}{x} }

can be further rewritten as

\red{ \boxed{ \sf{ \:on \: dividing \: each \: term \: by \: {\bigg[50\bigg]}^{\dfrac{1}{x} }, \: we \: get}}}

We know that,

\red{ \boxed{ \sf{ \: \frac{ {x}^{m} }{ {y}^{m} } =  {\bigg[\dfrac{x}{y} \bigg]}^{m}}}}

So, apply these, we get

\rm :\longmapsto\:{\bigg[2\bigg]}^{\dfrac{1}{x} } + \dfrac{1}{{\bigg[2\bigg]}^{\dfrac{1}{x} } } = \dfrac{17}{4}

Let we assume that,

\red{\rm :\longmapsto\:{\bigg[2\bigg]}^{\dfrac{1}{x} } = y -  -  -  - (1)}

So, above equation can be rewritten as

\rm :\longmapsto\:y + \dfrac{1}{y}  = \dfrac{17}{4}

\rm :\longmapsto\:\dfrac{ {y}^{2}  + 1}{y}  = \dfrac{17}{4}

\rm :\longmapsto\: {4y}^{2} + 4 = 17y

\rm :\longmapsto\: {4y}^{2} - 17y + 4 = 0

\rm :\longmapsto\: {4y}^{2} - 16y - y + 4 = 0

\rm :\longmapsto\:4y(y - 4) - 1(y - 4) = 0

\rm :\longmapsto\:(y - 4)(4y - 1) = 0

\bf\implies \:y = 4 \:  \:  \:  \: or \:  \:  \:  \: y = \dfrac{1}{4}

\bf\implies \:{\bigg[2\bigg]}^{\dfrac{1}{x} }  = 4 \:  \:  \:  \: or \:  \:  \:  \: {\bigg[2\bigg]}^{\dfrac{1}{x} }  = \dfrac{1}{4}

\bf\implies \:{\bigg[2\bigg]}^{\dfrac{1}{x} }  =  {2}^{2}  \:  \:  \:  \: or \:  \:  \:  \: {\bigg[2\bigg]}^{\dfrac{1}{x} }  = \dfrac{1}{ {2}^{2} }

\bf\implies \:\dfrac{1}{x} = 2 \:  \:  \:  \: or \:  \:  \:  \: \dfrac{1}{x} =  - 2

\bf\implies \:x = \dfrac{1}{2}  \:  \:  \: or \:  \:  \:  -  \: \dfrac{1}{2}


pulakmath007: More than Brilliant
Similar questions