Math, asked by guptaananya2005, 1 month ago

Solve the equations

\sf \: \sqrt{ {x}^{2} + 12y } + \sqrt{ {y}^{2} + 12x} = 33

and

\sf \: x + y = 23


Spammers please far away.

Brainly Mods, Brainly stars or best user or genius.

Please answer.

Don't co py and pa ste from Bro wser!!!!

No hit and trial needed, please ​

Answers

Answered by mathdude500
21

\large\underline{\sf{Solution-}}

Given that,

\red{\rm :\longmapsto\:\sf \: x + y = 23}

and

\rm :\longmapsto\: \: \sqrt{ {x}^{2} + 12y } + \sqrt{ {y}^{2} + 12x} = 33

can be rewritten as

\rm :\longmapsto\: \: \sqrt{ {x}^{2} + 12(23 - x) } + \sqrt{ {(23 - x)}^{2} + 12x} = 33

\red{\bigg \{ \because \: y \:  =  \: 23 \:  -  \: x\bigg \}}

\rm :\longmapsto\: \sqrt{ {x}^{2} - 12x + 276} +  \sqrt{529 +  {x}^{2}  - 46x + 12x}  = 33

\rm :\longmapsto\: \sqrt{ {x}^{2} - 12x + 276} +  \sqrt{529 +  {x}^{2}  - 34x}  = 33

Let assume that,

\rm :\longmapsto\:a =  \sqrt{ {x}^{2}  - 12x + 276}  -  -  -  - (1)

and

\rm :\longmapsto\:b =  \sqrt{ {x}^{2}  - 34x + 529}  -  -  -  -  - (2)

So, that,

\red{\rm :\longmapsto\:a + b = 33} -  -  -  - (3)

and

\red{\rm :\longmapsto\: {a}^{2} -  {b}^{2}}

\rm \:  =  \:  {x}^{2} - 12x + 276 -  {x}^{2} + 34x - 529

\rm \:  =  \:  22x - 253

\rm \:  =  \:  11(2x - 23)

 \red{\bf\implies \: {a}^{2} -  {b}^{2} = 11(2x - 23)}

\rm :\longmapsto\:(a + b)(a - b) = 11(2x - 23)

\rm :\longmapsto\:33(a - b) = 11(2x - 23)

\rm :\longmapsto\:a - b = \dfrac{2x - 23}{3} -  -  -  - (4)

On adding equation (3) and (4), we get

\rm :\longmapsto\:2a = 33 + \dfrac{2x - 23}{3}

\rm :\longmapsto\:2a = \dfrac{99 + 2x - 23}{3}

\rm :\longmapsto\:2a = \dfrac{76 + 2x}{3}

\rm :\longmapsto\:a = \dfrac{38 + x}{3}  -  -  -  - (5)

On substituting the value of a in equation (1), we get

\rm :\longmapsto\:\dfrac{38 + x}{3}  =  \sqrt{ {x}^{2}  - 12x + 276}

\rm :\longmapsto\:38 + x =  3\sqrt{ {x}^{2}  - 12x + 276}

On squaring both sides, we get

\rm :\longmapsto\: {(38 + x)}^{2} = 9( {x}^{2} - 12x + 276)

\rm :\longmapsto\:1444 +  {x}^{2} + 76x = 9 {x}^{2} - 108x + 2128

\rm :\longmapsto\: {8x}^{2} - 184x + 1040 = 0

\rm :\longmapsto\: 8({x}^{2} - 23x + 130) = 0

\rm :\longmapsto\: {x}^{2} - 23x + 130 = 0

\rm :\longmapsto\: {x}^{2} - 13x - 10x + 130 = 0

\rm :\longmapsto\:x(x - 13) - 10(x - 13) = 0

\rm :\longmapsto\:(x - 13)(x - 10) = 0

\bf\implies \:x = 13 \:  \:  \:  \: or \:  \:  \:  \: x = 10

So, corresponding values of y are

 \purple{\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 10 & \sf 13 \\ \\ \sf 13 & \sf 10 \end{array}} \\ \end{gathered}}

Similar questions