Math, asked by Dhruhee, 1 month ago

solve the following
1.(√5 - √2)^2​

Answers

Answered by GraceS
5

\sf\huge\bold{Answer:}

Given :

( \sqrt{5}  - 2) {}^{2}

Solution :

Using

⇒(x  -  y) {}^{2}  =  {x}^{2}  +  {y}^{2}   -  \: 2xy

we get,

⇒( \sqrt{5}  - 2) {}^{2}  =  { (\sqrt{5} )}^{2}  +  {2}^{2}  - 2( \sqrt{5} )(2)

Also,

 ⇒ (\sqrt{x} ) {}^{2}  =  \sqrt{x}  \times  \sqrt{x}  =  \sqrt{x \times x}  =  \sqrt{ {x}^{2} }  = x

So,implementing this in our polynomial , we get

 = 5 + 4 - 4 \sqrt{5}  \\  = 9 - 4 \sqrt{5}

Hence,

( \sqrt{5}  - 2) {}^{2}  = 9 - 4 \sqrt{5}

Answered by Salmonpanna2022
2

Step-by-step explanation:

Solution:

Given that

(√5 - √2)^2

since, (a - b)^2 = a^2 - 2ab + b^2

Where, a = 5

and b = 2.

(√5)^2 - 2(√5)(√2) + (√2)^2

The square of 5 is 5.

The square of 2 is 2.

→ 5 - 2√(5 × 2) + 2

→ 5 - 2√(10) + 2

→ 7 - 2(√10) Ans.

Similar questions