Math, asked by sreekarreddy91, 3 months ago

SOLVE THE FOLLOWING :-



1. What are the multiplicative and additive identities of rational numbers?



2. Write the additive inverse of 19/-6 and -⅔.



3. Write the multiplicative inverse of -13/19 and -7.



4. Mention any 4 rational numbers which are less than 5.



5. Find any five rational numbers between -3/5 and 1/3.



6. Use appropriate property and find

(-2/3 × 1/5) + ( 2/3 × 1/5 )



7. Which property you use to compute 1/4 × (3 × 4/7) as (1/4 × 3 ) × 4/7 ? Justify.



8. Represent -2/11, -5/11, and -9/11 on the number line.​

Answers

Answered by SachinGupta01
16

Solution : 1

The rational number 0 is the additive identity for rational numbers. The rational number 1 is the multiplicative identity for rational numbers

______________________________________

Solution - 2

 \sf \: (a). \: \: \dfrac{19}{ - 6} \:  =  \:  \dfrac{19}{6}

 \sf \: (b). \: \: \dfrac{ - 2}{3} \:  =  \:  \dfrac{2}{3}

______________________________________

Solution - 3

 \sf \: (a). \: \: \dfrac{ - 13}{ 19} \:  =  \:  \dfrac{ - 19}{13}

 \sf \: (b). \: \:  - 7 \:  =  \:  \dfrac{ - 1}{7}

______________________________________

Solution - 4

 \sf \: The \: rational \: number \: that \: are \: less \: than \: 5 \: are  \:  \underline{4, \: 3, \: 2, \: 1}.

______________________________________

Solution - 5

 \bf \:  To \:  find :

 \sf \: We \: have \: to \: find \:  five \: rational \: number \: between \:  \dfrac{ - 3}{5}  \: and \:  \dfrac{1}{3}

\bf \: \underline{ So, \: Let's \: find \: it}

 \sf \: First \: of \: all \: we \: have \: to \: make \: the \: denominators \: as \: same.

 \sf \: Taking \: LCM \: of  \: 5  \: and \:  3

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{3}}}&{\underline{\sf{\:\:5 - 3\:\:\:}}}\\ {\underline{\sf{5}}}& \underline{\sf{\:\:5 - 1\:\:\:}} \\\underline{\sf{}}&{\sf{\:\:  1 - 1\:\:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

 \sf \: LCM =  3 \times 5 = 15

\sf \longrightarrow \: \dfrac{ - 3}{5} \times \dfrac{3}{3} = \dfrac{ - 9}{15}

\sf \longrightarrow \: \dfrac{1}{3} \times \dfrac{5}{5} = \dfrac{5}{15}

\sf \: Now,

\dfrac{ { - 9}}{15}, \: \boxed{ \dfrac{ - 8}{15}, \: \dfrac{ - 7}{15}, \: \dfrac{ - 6}{15}, \: \dfrac{ - 5}{15}, \: \dfrac{ - 4}{15}, } \: \dfrac{5}{15}

 \sf \: Answer =  \dfrac{ - 8}{15}, \: \dfrac{ - 7}{15}, \: \dfrac{ - 6}{15}, \: \dfrac{ - 5}{15}, \: \dfrac{ - 4}{15}

______________________________________

Solution - 6

 \sf \:  \bigg( \dfrac{ - 2}{3}   \times\dfrac{1}{5}  \bigg) +  \bigg(  \dfrac{2}{3}   \times \dfrac{1}{5}  \bigg)

 \sf \:  \bigg( \dfrac{ 2}{3} \bigg)  \times\bigg(\dfrac{ - 1}{5}  \bigg) +  \bigg(  \dfrac{2}{3}  \bigg) \times \bigg(\dfrac{1}{5}  \bigg)

 \sf \:  \bigg( \dfrac{ 2}{3} \bigg)  \times \bigg[ \bigg(\dfrac{ - 1}{5}   + \dfrac{1}{5}  \bigg)  \bigg]

 \sf \:  \bigg( \dfrac{ 2}{3} \bigg)  \times \bigg[ \bigg(\dfrac{ - 1 + 1}{5} \bigg)  \bigg]

 \sf \:  \bigg( \dfrac{ 2}{3} \bigg)  \times  \bigg(\dfrac{ 0}{5} \bigg)

 \sf \:   \dfrac{ 2}{3}  \times  0

 \sf \: Answer = 0

______________________________________

Solution - 7

\sf \dfrac{1}{4}  \:  \bigg(3 \times  \dfrac{4}{7}  \bigg) \: as  \:  \bigg( \dfrac{1}{4}  \times 3 \bigg) \times  \dfrac{4}{7}

 \sf \dfrac{1}{4}  \:  \bigg(3 \times  \dfrac{4}{7}  \bigg)

 \sf \:   =  \dfrac{12}{28}

 \sf \:   =  \dfrac{3}{7}  -  -  -  -  -  -  \boxed{1}

 \sf \bigg( \dfrac{1}{4}  \times 3 \bigg) \times  \dfrac{4}{7}

 \bigg( \dfrac{3}{4}  \bigg) \times\bigg( \dfrac{4}{7}  \bigg)

 \sf \:   =  \dfrac{3}{7}  -  -  -  -  -  -  \boxed{2}

 \underline{ \sf \: Now,  \: from  \: 1  \: and  \: 2 }

\sf \dfrac{1}{4}  \:  \bigg(3 \times  \dfrac{4}{7}  \bigg) \: =   \:  \bigg( \dfrac{1}{4}  \times 3 \bigg) \times  \dfrac{4}{7}

 \sf \: Associative \: property \: of \: Rational \: no.  \: is  \: used  \: here.

______________________________________

Solution - 8

 \sf \: In \: this \: question \: we \: have \: to \: represent \:  \dfrac{ - 2}{11}  ,   \: \dfrac{ - 5}{11}  \: and \:  \dfrac{ - 9}{11}  \: on \: number \: line.

 \sf \: See \: the  \: attached  \: image...

Attachments:
Similar questions