solve the following
Attachments:
Answers
Answered by
1
Step-by-step explanation:
let theta = x
so we have,
tanx/(secx+1) = (secx-1)/tanx
LHS,
(sinx/cosx)/(1/cosx+1)
= sinx/(1+cosx)
= (2sinx/2cosx/2)/2cos²x/2
as, sin2A = 2sinAcosA
and 1+cos2A = 2cos²A
so, (sinx/2)/(cosx/2)
=> tanx/2
LHS,
(1/cosx-1)/(sinx/cosx)
= (1-cosx)/sinx
= (2sin²x/2)/(2sinx/2cosx/2)
as, 1-cos2A = 2sin²A
so, (sinx/2)/(cosx/2)
=> tanx/2
so, LHS = RHS
hence proved....
OR
as we have,
tanx/(secx+1) = (secx-1)/tanx
cross-multiplication
tan²x = (secx-1)(secx+1)
tan²x = sec²x-1
1 = sec²x-tan²x
as it is identity that,,
sec²x-tan²x = 1
so in above eq.
1=1
i.e., LHS = RHS
hence proved....
Similar questions