Math, asked by nallanirmala1991, 4 months ago


SOLVE THE FOLLOWING​

Attachments:

Answers

Answered by Anonymous
113

♣ Qᴜᴇꜱᴛɪᴏɴ :

  • Show that :  \sf{\left(x^{3n+1}\cdot \:x^{3n-1}\right)^2=x^{12n}}

★═════════════════★  

♣ ꜰᴏʀᴍᴜʟᴀᴇ ᴜꜱᴇᴅ :

  • \sf{a^m\cdot a^n=a^{m+n}}
  • \sf{(a^m)^n=a^{mn}}

★═════════════════★  

♣ ᴀɴꜱᴡᴇʀ :

\sf{\left(x^{3n+1}\cdot \:x^{3n-1}\right)^2=x^{12n}}

Apply Exponential Rule :  \sf{a^m\cdot a^n=a^{m+n}}

\sf{\left(x^{3n+1}\cdot \:x^{3n-1}\right)^2=x^{12n}}

\implies\sf{\left(x^{(3n+1)+(3n-1)}\right)^2=x^{12n}}

\implies\sf{\left(x^{3n+1+3n-1}\right)^2=x^{12n}}

Cancelling +1 and -1 :

\implies\sf{\left(x^{3n+3n}\right)^2=x^{12n}}

\implies\sf{\left(x^{6n}\right)^2=x^{12n}}

Apply Exponential Rule : \sf{(a^m)^n=a^{mn}}

\implies\sf{\left(x\right)^{6n\cdot 2}=x^{12n}}

\implies\sf{\left(x\right)^{12n}=x^{12n}}

\large\boxed{\implies\sf{x^{12n}=x^{12n}}}

We showed that \sf{\left(x^{3n+1}\cdot \:x^{3n-1}\right)^2=x^{12n}}

Hence Proved !!!


TheMoonlìghtPhoenix: Wow
BrainlyPopularman: Keep it up
ButterFliee: Nice :)
Vamprixussa: Excellent !
Anonymous: Awesome!
amitkumar44481: Good :-)p
Similar questions