Math, asked by evelynmohangcr, 10 months ago

solve the following 2x +3y =4xy, 3x + y= 10 xy​

Answers

Answered by Mysterioushine
10

SOLUTION :-

2x + 3y = 4xy =  > x =  \frac{4xy - 3y}{2} - eq(1) \\  \\ 3x + y = 10xy =  > x =  \frac{10xy - y}{3}   - eq(2) \\  \\ since \: lhs \: is \: equal \: rhs \: can \: be \: equated \\  \\  =  >  \frac{4xy - 3y}{2}  =  \frac{10xy - y}{3}  \\  \\  =  > 3(4xy - 3y) = 2(10xy - y) \\  \\  =  > 12xy - 9y = 20xy - 2y \\  \\  =  >  - 7y = 8xy \\  \\  =  > 0 = 8xy + 7y \\  \\  =  > 0 = y(8x + 7) \\  \\  =  > 8x + 7 = 0 \\  \\  =  >  \frac{ - 7}{8}  = x \\  \\ from \: eq(1) \\  \\  \frac{ - 7}{8}  =  \frac{4xy - 3y}{2}  \\  \\  =  >  \frac{ - 7}{4}  = 4xy - 3y \\ \\   = >  \frac{ - 7}{4}   = y(4x - 3) \\  \\  =  >  \frac{ - 7}{4}  = y(4 \times  \frac{ - 7}{8}  - 3) \\  \\  =  >  \frac{ - 7}{4}  = y(  \frac{ - 7}{2}  - 3) \\  \\  =  >  \frac{ - 7}{4y}  = (  \frac{ - 13}{2} ) \\  \\  =  >  \frac{ - 7}{2y}  =  - 13 \\  \\  =  >  - 7 =  - 26y \\  \\  =  > y =  \frac{7}{26}

Similar questions