Solve the following..
Answers
Step-by-step explanation:
Given:
To find: value of γ.
Solution:
Take RHS,
Answer: Hence the value of γ=0.
Answer:
Step-by-step explanation:
Given: \begin{gathered} \\ \rm\gamma=\lim \limits _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\ln n\right) \end{gathered}
γ=
n→∞
lim
(
k=1
∑
n
k
1
−lnn)
To find: value of γ.
Solution:
Take RHS,
\begin{gathered} \begin{array}{l} \\ \displaystyle \rm =\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\ln n\right) \\ \\ \displaystyle \rm=\lim _{n \rightarrow \infty}\left(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)-\ln n\right) \\ \\ \displaystyle \rm=\lim _{n \rightarrow \infty}\left[\frac{1}{n}\left(\frac{n}{1}+\frac{n}{2}+\cdots+\frac{n}{n}\right)-\frac{n \ln n}{n}\right] \\ \\ \displaystyle \rm=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(n+\frac{n}{2}+\cdots+1\right)-n \ln n\right] \\ \\ \displaystyle \rm=\frac{1}{\infty}(\text { Non }-\text { infinite value })=0 \\ \\ \red{ \boxed{ \displaystyle \rm \therefore \text { LHS }= \gamma=0 }}\end{array} \end{gathered}
=
n→∞
lim
(
k=1
∑
n
k
1
−lnn)
=
n→∞
lim
((
1
1
+
2
1
+
3
1
+⋯+
n
1
)−lnn)
=
n→∞
lim
[
n
1
(
1
n
+
2
n
+⋯+
n
n
)−
n
nlnn
]
=
n→∞
lim
n
1
[(n+
2
n
+⋯+1)−nlnn]
=
∞
1
( Non − infinite value )=0
∴ LHS =γ=0
the value of γ=0.