Math, asked by devil1258, 6 hours ago

solve the following 4x²-25=0​

Answers

Answered by brainlyehsanul
21

Solution :

  \:  \:  \:  \:  \:  \:  \: {4x}^{2}  - 25 = 0

 =  > (2x) ^{2}  -  {5}^{2}  = 0

 =  > (2x - 5)(2x + 5) = 0

 =  > 2x - 5 = 0 \:  \:  \:  \: or \:  \:  \:  \: 2x + 5 = 0

 =  > 2x = 5 \:  \:  \:  \: or \:  \:  \:  \: 2x =  - 5

 =  > x =  \frac{5}{2}  \:  \:  \:  \: or \:  \:  \:  \: x =  \frac{ - 5}{2} .

Answered by bhatakash001
0

Answer:

Use the quadratic formula

=

±

2

4

2

x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}

x=2a−b±b2−4ac

Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.

4

2

2

5

=

0

4x^{2}-25=0

4x2−25=0

=

4

a={\color{#c92786}{4}}

a=4

=

0

b={\color{#e8710a}{0}}

b=0

=

2

5

c={\color{#129eaf}{-25}}

c=−25

=

0

±

0

2

4

4 of

(

2

5

)

2

4

Similar questions